From 8207aaa66e2414b3307c2970e2270a16875e5431 Mon Sep 17 00:00:00 2001 From: shchmue Date: Sat, 29 Oct 2022 15:43:17 -0700 Subject: [PATCH] keys: Name keyslots, use more apt SSL key name --- source/keys/keys.c | 180 ++++++++++++++++++++++----------------------- source/keys/keys.h | 29 +++++++- 2 files changed, 115 insertions(+), 94 deletions(-) diff --git a/source/keys/keys.c b/source/keys/keys.c index ceb40f5..5604180 100644 --- a/source/keys/keys.c +++ b/source/keys/keys.c @@ -82,16 +82,16 @@ static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation); static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt); // titlekey functions -static bool _test_key_pair(const void *E, const void *D, const void *N); +static bool _test_rsa_keypair(const void *E, const void *D, const void *N); static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) { // Relies on the SBK being properly set in slot 14 - se_aes_crypt_block_ecb(14, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); + se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); // Derive all master keys based on Mariko KEK for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) { // Relies on the Mariko KEK being properly set in slot 12 - se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source) - _load_aes_key(8, keys->master_key[i], keys->master_kek[i], master_key_source); + se_aes_crypt_block_ecb(KS_MARIKO_KEK, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); + _load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source); } } @@ -118,16 +118,16 @@ static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool u32 tsec_root_key_slot = is_dev ? 11 : 13; // Derive all master keys based on current root key for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) { - se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks) - _load_aes_key(8, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source); + se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); + _load_aes_key(KS_AES_ECB, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source); } } // Derive all lower master keys for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { - _load_aes_key(8, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); + _load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); } - _load_aes_key(8, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); + _load_aes_key(KS_AES_ECB, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); if (_key_exists(keys->temp_key)) { EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod"); @@ -164,34 +164,34 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) { encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block; for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) { minerva_periodic_training(); - se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec) - se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk) - _load_aes_key(7, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) + se_aes_crypt_block_ecb(KS_TSEC, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); + se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); + _load_aes_key(KS_AES_ECB, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); if (i == 0) { - se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) - se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); + se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key, per_console_key_source); + se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); } if (!have_keyblobs) { continue; } - // verify keyblob is not corrupt - se_aes_key_set(10, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i])); - se_aes_cmac(10, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t)); + // Verify keyblob is not corrupt + se_aes_key_set(KS_AES_CMAC, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i])); + se_aes_cmac(KS_AES_CMAC, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t)); if (memcmp(current_keyblob->cmac, keyblob_mac, sizeof(keyblob_mac)) != 0) { EPRINTFARGS("Keyblob %x corrupt.", i); continue; } - // decrypt keyblobs - se_aes_key_set(6, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); - se_aes_crypt_ctr(6, &keys->keyblob[i], sizeof(keyblob_t), ¤t_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv); + // Decrypt keyblobs + se_aes_key_set(KS_AES_CTR, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); + se_aes_crypt_ctr(KS_AES_CTR, &keys->keyblob[i], sizeof(keyblob_t), ¤t_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv); memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i])); memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i])); if (!_key_exists(keys->master_key[i])) { - _load_aes_key(7, keys->master_key[i], keys->master_kek[i], master_key_source); + _load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source); } } free(keyblob_block); @@ -204,12 +204,12 @@ static void _derive_bis_keys(key_derivation_ctx_t *keys) { if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) { return; } - _generate_specific_aes_key(8, keys, &keys->bis_key[0], bis_key_sources[0], generation); + _generate_specific_aes_key(KS_AES_ECB, keys, &keys->bis_key[0], bis_key_sources[0], generation); u32 access_key[AES_128_KEY_SIZE / 4] = {0}; const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE); - _generate_aes_kek(8, keys, access_key, bis_kek_source, generation, option); - _generate_aes_key(8, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]); - _generate_aes_key(8, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]); + _generate_aes_kek(KS_AES_ECB, keys, access_key, bis_kek_source, generation, option); + _generate_aes_key(KS_AES_ECB, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]); + _generate_aes_key(KS_AES_ECB, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]); memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3])); } @@ -217,19 +217,19 @@ static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) { if (_key_exists(keys->master_key[0])) { const u32 generation = 0; const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE); - _generate_aes_kek(8, keys, keys->temp_key, header_kek_source, generation, option); - _generate_aes_key(8, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source); + _generate_aes_kek(KS_AES_ECB, keys, keys->temp_key, header_kek_source, generation, option); + _generate_aes_key(KS_AES_ECB, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source); } } -static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) { +static void _derive_eticket_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) { void *access_key = keys->temp_key; _generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option); _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source); } -static void _derive_ssl_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) { +static void _derive_ssl_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) { void *access_key = keys->temp_key; _generate_aes_kek(ks, keys, access_key, kekek_source, generation, option); _get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source); @@ -240,19 +240,19 @@ static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) { void *access_key = keys->temp_key; const u32 generation = 0; const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE); - _generate_aes_kek(8, keys, access_key, save_mac_kek_source, generation, option); - _load_aes_key(8, keys->save_mac_key, access_key, save_mac_key_source); + _generate_aes_kek(KS_AES_ECB, keys, access_key, save_mac_kek_source, generation, option); + _load_aes_key(KS_AES_ECB, keys->save_mac_key, access_key, save_mac_key_source); } if (_key_exists(keys->master_key[0])) { const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source; const u32 generation = 0; u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY); - _derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, eticket_kek_source, generation, option); + _derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek, eticket_kek_source, generation, option); const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source; option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA); - _derive_ssl_rsa_kek(keys, 8, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option); + _derive_ssl_rsa_kek(KS_AES_ECB, keys, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option); } } @@ -263,11 +263,11 @@ static void _derive_per_generation_keys(key_derivation_ctx_t *keys) { for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) { void *access_key = keys->temp_key; const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE); - _generate_aes_kek(8, keys, access_key, key_area_key_sources[source_type], generation + 1, option); - _load_aes_key(8, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source); + _generate_aes_kek(KS_AES_ECB, keys, access_key, key_area_key_sources[source_type], generation + 1, option); + _load_aes_key(KS_AES_ECB, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source); } - _load_aes_key(8, keys->package2_key[generation], keys->master_key[generation], package2_key_source); - _load_aes_key(8, keys->titlekek[generation], keys->master_key[generation], titlekek_source); + _load_aes_key(KS_AES_ECB, keys->package2_key[generation], keys->master_key[generation], package2_key_source); + _load_aes_key(KS_AES_ECB, keys->titlekek[generation], keys->master_key[generation], titlekek_source); } } @@ -425,7 +425,7 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) { EPRINTF("Unable to open SD seed vector. Skipping."); return false; } - // get sd seed verification vector + // Get sd seed verification vector if (f_read(&fp, keys->temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) { EPRINTF("Unable to read SD seed vector. Skipping."); f_close(&fp); @@ -433,7 +433,7 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) { } f_close(&fp); - // this file is small enough that parsing the savedata properly is slower + // This file is small enough that parsing the savedata properly is slower if (f_open(&fp, "bis:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to open ns_appman save.\nSkipping SD seed."); return false; @@ -482,7 +482,7 @@ static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u *out_key = cal0->ext_ssl_key; *out_key_size = ext_key_size; *out_iv = cal0->ext_ssl_key_iv; - // settings sysmodule manually zeroes this out below cal version 9 + // Settings sysmodule manually zeroes this out below cal version 9 *out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver; } else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) { *out_key = cal0->ssl_key; @@ -501,63 +501,63 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu } nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer; - u32 keypair_generation = 0; + u32 generation = 0; const void *ssl_device_key = NULL; const void *ssl_iv = NULL; u32 key_size = 0; void *keypair_ctr_key = NULL; bool enforce_unique = true; - if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &keypair_generation)) { + if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &generation)) { EPRINTF("Crc16 error reading device key."); return false; } - if (key_size == SSL_RSA_KEYPAIR_SIZE) { + if (key_size == SSL_RSA_KEY_SIZE) { bool all_zero = true; const u8 *key8 = (const u8 *)ssl_device_key; - for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEYPAIR_SIZE; i++) { + for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEY_SIZE; i++) { if (key8[i] != 0) { all_zero = false; break; } } if (all_zero) { - // keypairs of this form are not encrypted - memcpy(keys->ssl_rsa_keypair, ssl_device_key, RSA_2048_KEY_SIZE); + // Keypairs of this form are not encrypted + memcpy(keys->ssl_rsa_key, ssl_device_key, RSA_2048_KEY_SIZE); return true; } u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA); keypair_ctr_key = keys->ssl_rsa_kek_legacy; - _derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, keypair_generation, option); + _derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option); enforce_unique = false; } - if (keypair_generation) { + if (generation) { u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE; keypair_ctr_key = keys->ssl_rsa_kek_personalized; - _derive_ssl_rsa_kek(keys, 7, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, keypair_generation, option); + _derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option); } else { keypair_ctr_key = keys->ssl_rsa_kek; } u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10; - se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); - se_aes_crypt_ctr(6, keys->ssl_rsa_keypair, ctr_size, ssl_device_key, ctr_size, ssl_iv); + se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(KS_AES_CTR, keys->ssl_rsa_key, ctr_size, ssl_device_key, ctr_size, ssl_iv); if (enforce_unique) { u32 j_block[AES_128_KEY_SIZE / 4] = {0}; - se_aes_key_set(7, keypair_ctr_key, AES_128_KEY_SIZE); - _ghash(7, j_block, ssl_iv, 0x10, NULL, false); + se_aes_key_set(KS_AES_ECB, keypair_ctr_key, AES_128_KEY_SIZE); + _ghash(KS_AES_ECB, j_block, ssl_iv, 0x10, NULL, false); u32 calc_mac[AES_128_KEY_SIZE / 4] = {0}; - _ghash(7, calc_mac, keys->ssl_rsa_keypair, ctr_size, j_block, true); + _ghash(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, j_block, true); const u8 *key8 = (const u8 *)ssl_device_key; if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) { EPRINTF("SSL keypair has invalid GMac."); - memset(keys->ssl_rsa_keypair, 0, sizeof(keys->ssl_rsa_keypair)); + memset(keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key)); return false; } } @@ -574,7 +574,7 @@ static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_ke if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) { *out_key = cal0->ext_ecc_rsa2048_eticket_key; *out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv; - // settings sysmodule manually zeroes this out below cal version 9 + // Settings sysmodule manually zeroes this out below cal version 9 *out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver; } else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) { *out_key = cal0->rsa2048_eticket_key; @@ -598,35 +598,35 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit } nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer; - u32 keypair_generation = 0; + u32 generation = 0; const void *eticket_device_key = NULL; const void *eticket_iv = NULL; void *keypair_ctr_key = NULL; - if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &keypair_generation)) { + if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &generation)) { EPRINTF("Crc16 error reading device key."); return false; } - if (keypair_generation) { + if (generation) { u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE; - _derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, keypair_generation, option); + _derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, generation, option); keypair_ctr_key = keys->eticket_rsa_kek_personalized; } else { keypair_ctr_key = keys->eticket_rsa_kek; } - se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); - se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); + se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) { - // try legacy kek source + // Try legacy kek source u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY); keypair_ctr_key = keys->temp_key; - _derive_eticket_rsa_kek(keys, 7, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option); + _derive_eticket_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option); - se_aes_key_set(6, keypair_ctr_key, AES_128_KEY_SIZE); - se_aes_crypt_ctr(6, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); + se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv); if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) { EPRINTF("Invalid public exponent."); @@ -637,7 +637,7 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit } } - if (!_test_key_pair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) { + if (!_test_rsa_keypair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) { EPRINTF("Invalid keypair. Check eticket_rsa_kek."); memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair)); return false; @@ -655,20 +655,20 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { // Set BIS keys. // PRODINFO/PRODINFOF - se_aes_key_set(0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE); - se_aes_key_set(1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_00_0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_00_1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE); // SAFE - se_aes_key_set(2, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE); - se_aes_key_set(3, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_01_0, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_01_1, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE); // SYSTEM/USER - se_aes_key_set(4, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE); - se_aes_key_set(5, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_02_0, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE); + se_aes_key_set(KS_BIS_02_1, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE); if (!emummc_storage_set_mmc_partition(EMMC_GPP)) { EPRINTF("Unable to set partition."); return false; } - // Parse eMMC GPT. + // Parse eMMC GPT LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &emmc_storage); @@ -877,7 +877,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl SAVE_KEY(ssl_rsa_kek_source); } SAVE_KEY(ssl_rsa_kekek_source); - _save_key("ssl_rsa_keypair", keys->ssl_rsa_keypair, RSA_2048_KEY_SIZE, text_buffer); + _save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer); SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0); SAVE_KEY(titlekek_source); SAVE_KEY_VAR(tsec_key, keys->tsec_key); @@ -931,8 +931,8 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl static bool _check_keyslot_access() { u8 test_data[AES_128_KEY_SIZE] = {0}; const u8 test_ciphertext[AES_128_KEY_SIZE] = {0}; - se_aes_key_set(8, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE); - se_aes_crypt_block_ecb(8, DECRYPT, test_data, test_ciphertext); + se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE); + se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext); return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0; } @@ -952,9 +952,9 @@ static void _derive_master_keys(key_derivation_ctx_t *prod_keys, key_derivation_ u8 *aes_keys = (u8 *)calloc(SZ_4K, 1); se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE); - memcpy(&dev_keys->tsec_root_key, aes_keys + 11 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); - memcpy(keys->tsec_key, aes_keys + 12 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); - memcpy(&prod_keys->tsec_root_key, aes_keys + 13 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); + memcpy(&dev_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT_DEV * AES_128_KEY_SIZE, AES_128_KEY_SIZE); + memcpy(keys->tsec_key, aes_keys + KS_TSEC * AES_128_KEY_SIZE, AES_128_KEY_SIZE); + memcpy(&prod_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT * AES_128_KEY_SIZE, AES_128_KEY_SIZE); free(aes_keys); _derive_master_keys_from_latest_key(prod_keys, false); @@ -1069,19 +1069,19 @@ void derive_amiibo_keys() { return; } - _decrypt_aes_key(8, keys, keys->temp_key, nfc_key_source, 0, 0); + _decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0); nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob; static const u8 nfc_iv[AES_128_KEY_SIZE] = { 0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8}; - se_aes_key_set(6, keys->temp_key, AES_128_KEY_SIZE); - se_aes_crypt_ctr(6, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv); + se_aes_key_set(KS_AES_CTR, keys->temp_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv); minerva_periodic_training(); u8 xor_pad[0x20] __attribute__((aligned(4))) = {0}; - se_aes_key_set(6, nfc_keyblob.ctr_key, AES_128_KEY_SIZE); - se_aes_crypt_ctr(6, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv); + se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, AES_128_KEY_SIZE); + se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv); minerva_periodic_training(); @@ -1236,10 +1236,10 @@ static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, // Equivalent to smc::GetSecureData static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) { - se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE); + se_aes_key_set(KS_AES_CTR, keys->device_key, AES_128_KEY_SIZE); u8 *d = (u8 *)out_data; - se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); - se_aes_crypt_ctr(6, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); + se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); + se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); // Apply tweak for (u32 i = 0; i < AES_128_KEY_SIZE; i++) { @@ -1252,8 +1252,8 @@ static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void if (fuse_read_bootrom_rev() >= 0x7F) { _get_device_key(ks, keys, keys->temp_key, generation - 1); se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE); - se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) - se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) + se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); + se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); } else { _get_secure_data(keys, out_key); } @@ -1379,7 +1379,7 @@ static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void memcpy(dst, x, 0x10); } -static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) { +static bool _test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) { u8 plaintext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}, ciphertext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}, work[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}; diff --git a/source/keys/keys.h b/source/keys/keys.h index cc67c4a..3a61684 100644 --- a/source/keys/keys.h +++ b/source/keys/keys.h @@ -26,6 +26,29 @@ #define RSA_PUBLIC_EXPONENT 65537 +// Lockpick_RCM keyslots +#define KS_BIS_00_0 0 +#define KS_BIS_00_1 1 +#define KS_BIS_01_0 2 +#define KS_BIS_01_1 3 +#define KS_BIS_02_0 4 +#define KS_BIS_02_1 5 +#define KS_AES_CTR 6 +#define KS_AES_ECB 8 +#define KS_AES_CMAC 10 + +// Mariko keyslots +#define KS_MARIKO_KEK 12 +#define KS_MARIKO_BEK 13 + +// Other Switch keyslots +#define KS_TSEC 12 +#define KS_SECURE_BOOT 14 + +// Atmosphere keygen keyslots +#define KS_TSEC_ROOT_DEV 11 +#define KS_TSEC_ROOT 13 + // only tickets of type Rsa2048Sha256 are expected typedef struct { u32 signature_type; // always 0x10004 @@ -125,9 +148,7 @@ typedef enum { #define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7) #define GET_IS_DEVICE_UNIQUE(x) ((x) & 1) -#define WRAPPED_RSA_EXT_DATA_SIZE 0x20 -#define SSL_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE) -#define SSL_RSA_EXT_KEYPAIR_SIZE (SSL_RSA_KEYPAIR_SIZE + WRAPPED_RSA_EXT_DATA_SIZE) +#define SSL_RSA_KEY_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE) typedef struct { u8 temp_key[AES_128_KEY_SIZE], @@ -144,7 +165,7 @@ typedef struct { ssl_rsa_kek[AES_128_KEY_SIZE], ssl_rsa_kek_legacy[AES_128_KEY_SIZE], ssl_rsa_kek_personalized[AES_128_KEY_SIZE], - ssl_rsa_keypair[RSA_2048_KEY_SIZE + 0x20], + ssl_rsa_key[RSA_2048_KEY_SIZE + 0x20], // keyblob-derived families keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE], keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],