1
0
mirror of https://github.com/DNSCrypt/dnscrypt-proxy.git synced 2025-01-19 03:00:29 +01:00
dnscrypt-proxy/vendor/github.com/aead/poly1305/poly1305_ref.go
2018-04-16 02:19:29 +02:00

230 lines
6.1 KiB
Go

// Copyright (c) 2016 Andreas Auernhammer. All rights reserved.
// Use of this source code is governed by a license that can be
// found in the LICENSE file.
// +build !amd64 gccgo appengine nacl
package poly1305
import "encoding/binary"
const (
msgBlock = uint32(1 << 24)
finalBlock = uint32(0)
)
// Sum generates an authenticator for msg using a one-time key and returns the
// 16-byte result. Authenticating two different messages with the same key allows
// an attacker to forge messages at will.
func Sum(msg []byte, key [32]byte) [TagSize]byte {
var (
h, r [5]uint32
s [4]uint32
)
var out [TagSize]byte
initialize(&r, &s, &key)
// process full 16-byte blocks
n := len(msg) & (^(TagSize - 1))
if n > 0 {
update(msg[:n], msgBlock, &h, &r)
msg = msg[n:]
}
if len(msg) > 0 {
var block [TagSize]byte
off := copy(block[:], msg)
block[off] = 1
update(block[:], finalBlock, &h, &r)
}
finalize(&out, &h, &s)
return out
}
// New returns a hash.Hash computing the poly1305 sum.
// Notice that Poly1305 is insecure if one key is used twice.
func New(key [32]byte) *Hash {
p := new(Hash)
initialize(&(p.r), &(p.s), &key)
return p
}
// Hash implements a Poly1305 writer interface.
// Poly1305 cannot be used like common hash.Hash implementations,
// because using a poly1305 key twice breaks its security.
// So poly1305.Hash does not support some kind of reset.
type Hash struct {
h, r [5]uint32
s [4]uint32
buf [TagSize]byte
off int
done bool
}
// Size returns the number of bytes Sum will append.
func (p *Hash) Size() int { return TagSize }
// Write adds more data to the running Poly1305 hash.
// This function should return a non-nil error if a call
// to Write happens after a call to Sum. So it is not possible
// to compute the checksum and than add more data.
func (p *Hash) Write(msg []byte) (int, error) {
if p.done {
return 0, errWriteAfterSum
}
n := len(msg)
if p.off > 0 {
dif := TagSize - p.off
if n <= dif {
p.off += copy(p.buf[p.off:], msg)
return n, nil
}
copy(p.buf[p.off:], msg[:dif])
msg = msg[dif:]
update(p.buf[:], msgBlock, &(p.h), &(p.r))
p.off = 0
}
// process full 16-byte blocks
if nn := len(msg) & (^(TagSize - 1)); nn > 0 {
update(msg[:nn], msgBlock, &(p.h), &(p.r))
msg = msg[nn:]
}
if len(msg) > 0 {
p.off += copy(p.buf[p.off:], msg)
}
return n, nil
}
// Sum appends the Pol1305 hash of the previously
// processed data to b and returns the resulting slice.
// It is safe to call this function multiple times.
func (p *Hash) Sum(b []byte) []byte {
var out [TagSize]byte
h := p.h
if p.off > 0 {
var buf [TagSize]byte
copy(buf[:], p.buf[:p.off])
buf[p.off] = 1 // invariant: p.off < TagSize
update(buf[:], finalBlock, &h, &(p.r))
}
finalize(&out, &h, &(p.s))
p.done = true
return append(b, out[:]...)
}
func initialize(r *[5]uint32, s *[4]uint32, key *[32]byte) {
r[0] = binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff
r[1] = (binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03
r[2] = (binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff
r[3] = (binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff
r[4] = (binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff
s[0] = binary.LittleEndian.Uint32(key[16:])
s[1] = binary.LittleEndian.Uint32(key[20:])
s[2] = binary.LittleEndian.Uint32(key[24:])
s[3] = binary.LittleEndian.Uint32(key[28:])
}
func update(msg []byte, flag uint32, h, r *[5]uint32) {
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
r0, r1, r2, r3, r4 := uint64(r[0]), uint64(r[1]), uint64(r[2]), uint64(r[3]), uint64(r[4])
R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
for len(msg) >= TagSize {
// h += msg
h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | flag
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
msg = msg[TagSize:]
}
h[0], h[1], h[2], h[3], h[4] = h0, h1, h2, h3, h4
}
func finalize(out *[TagSize]byte, h *[5]uint32, s *[4]uint32) {
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
// h %= p reduction
h2 += h1 >> 26
h1 &= 0x3ffffff
h3 += h2 >> 26
h2 &= 0x3ffffff
h4 += h3 >> 26
h3 &= 0x3ffffff
h0 += 5 * (h4 >> 26)
h4 &= 0x3ffffff
h1 += h0 >> 26
h0 &= 0x3ffffff
// h - p
t0 := h0 + 5
t1 := h1 + (t0 >> 26)
t2 := h2 + (t1 >> 26)
t3 := h3 + (t2 >> 26)
t4 := h4 + (t3 >> 26) - (1 << 26)
t0 &= 0x3ffffff
t1 &= 0x3ffffff
t2 &= 0x3ffffff
t3 &= 0x3ffffff
// select h if h < p else h - p
t_mask := (t4 >> 31) - 1
h_mask := ^t_mask
h0 = (h0 & h_mask) | (t0 & t_mask)
h1 = (h1 & h_mask) | (t1 & t_mask)
h2 = (h2 & h_mask) | (t2 & t_mask)
h3 = (h3 & h_mask) | (t3 & t_mask)
h4 = (h4 & h_mask) | (t4 & t_mask)
// h %= 2^128
h0 |= h1 << 26
h1 = ((h1 >> 6) | (h2 << 20))
h2 = ((h2 >> 12) | (h3 << 14))
h3 = ((h3 >> 18) | (h4 << 8))
// s: the s part of the key
// tag = (h + s) % (2^128)
t := uint64(h0) + uint64(s[0])
h0 = uint32(t)
t = uint64(h1) + uint64(s[1]) + (t >> 32)
h1 = uint32(t)
t = uint64(h2) + uint64(s[2]) + (t >> 32)
h2 = uint32(t)
t = uint64(h3) + uint64(s[3]) + (t >> 32)
h3 = uint32(t)
binary.LittleEndian.PutUint32(out[0:], h0)
binary.LittleEndian.PutUint32(out[4:], h1)
binary.LittleEndian.PutUint32(out[8:], h2)
binary.LittleEndian.PutUint32(out[12:], h3)
}