206 lines
5.1 KiB
Go
206 lines
5.1 KiB
Go
package iradix
|
|
|
|
import (
|
|
"bytes"
|
|
)
|
|
|
|
// Iterator is used to iterate over a set of nodes
|
|
// in pre-order
|
|
type Iterator struct {
|
|
node *Node
|
|
stack []edges
|
|
}
|
|
|
|
// SeekPrefixWatch is used to seek the iterator to a given prefix
|
|
// and returns the watch channel of the finest granularity
|
|
func (i *Iterator) SeekPrefixWatch(prefix []byte) (watch <-chan struct{}) {
|
|
// Wipe the stack
|
|
i.stack = nil
|
|
n := i.node
|
|
watch = n.mutateCh
|
|
search := prefix
|
|
for {
|
|
// Check for key exhaustion
|
|
if len(search) == 0 {
|
|
i.node = n
|
|
return
|
|
}
|
|
|
|
// Look for an edge
|
|
_, n = n.getEdge(search[0])
|
|
if n == nil {
|
|
i.node = nil
|
|
return
|
|
}
|
|
|
|
// Update to the finest granularity as the search makes progress
|
|
watch = n.mutateCh
|
|
|
|
// Consume the search prefix
|
|
if bytes.HasPrefix(search, n.prefix) {
|
|
search = search[len(n.prefix):]
|
|
|
|
} else if bytes.HasPrefix(n.prefix, search) {
|
|
i.node = n
|
|
return
|
|
} else {
|
|
i.node = nil
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// SeekPrefix is used to seek the iterator to a given prefix
|
|
func (i *Iterator) SeekPrefix(prefix []byte) {
|
|
i.SeekPrefixWatch(prefix)
|
|
}
|
|
|
|
func (i *Iterator) recurseMin(n *Node) *Node {
|
|
// Traverse to the minimum child
|
|
if n.leaf != nil {
|
|
return n
|
|
}
|
|
nEdges := len(n.edges)
|
|
if nEdges > 1 {
|
|
// Add all the other edges to the stack (the min node will be added as
|
|
// we recurse)
|
|
i.stack = append(i.stack, n.edges[1:])
|
|
}
|
|
if nEdges > 0 {
|
|
return i.recurseMin(n.edges[0].node)
|
|
}
|
|
// Shouldn't be possible
|
|
return nil
|
|
}
|
|
|
|
// SeekLowerBound is used to seek the iterator to the smallest key that is
|
|
// greater or equal to the given key. There is no watch variant as it's hard to
|
|
// predict based on the radix structure which node(s) changes might affect the
|
|
// result.
|
|
func (i *Iterator) SeekLowerBound(key []byte) {
|
|
// Wipe the stack. Unlike Prefix iteration, we need to build the stack as we
|
|
// go because we need only a subset of edges of many nodes in the path to the
|
|
// leaf with the lower bound. Note that the iterator will still recurse into
|
|
// children that we don't traverse on the way to the reverse lower bound as it
|
|
// walks the stack.
|
|
i.stack = []edges{}
|
|
// i.node starts off in the common case as pointing to the root node of the
|
|
// tree. By the time we return we have either found a lower bound and setup
|
|
// the stack to traverse all larger keys, or we have not and the stack and
|
|
// node should both be nil to prevent the iterator from assuming it is just
|
|
// iterating the whole tree from the root node. Either way this needs to end
|
|
// up as nil so just set it here.
|
|
n := i.node
|
|
i.node = nil
|
|
search := key
|
|
|
|
found := func(n *Node) {
|
|
i.stack = append(i.stack, edges{edge{node: n}})
|
|
}
|
|
|
|
findMin := func(n *Node) {
|
|
n = i.recurseMin(n)
|
|
if n != nil {
|
|
found(n)
|
|
return
|
|
}
|
|
}
|
|
|
|
for {
|
|
// Compare current prefix with the search key's same-length prefix.
|
|
var prefixCmp int
|
|
if len(n.prefix) < len(search) {
|
|
prefixCmp = bytes.Compare(n.prefix, search[0:len(n.prefix)])
|
|
} else {
|
|
prefixCmp = bytes.Compare(n.prefix, search)
|
|
}
|
|
|
|
if prefixCmp > 0 {
|
|
// Prefix is larger, that means the lower bound is greater than the search
|
|
// and from now on we need to follow the minimum path to the smallest
|
|
// leaf under this subtree.
|
|
findMin(n)
|
|
return
|
|
}
|
|
|
|
if prefixCmp < 0 {
|
|
// Prefix is smaller than search prefix, that means there is no lower
|
|
// bound
|
|
i.node = nil
|
|
return
|
|
}
|
|
|
|
// Prefix is equal, we are still heading for an exact match. If this is a
|
|
// leaf and an exact match we're done.
|
|
if n.leaf != nil && bytes.Equal(n.leaf.key, key) {
|
|
found(n)
|
|
return
|
|
}
|
|
|
|
// Consume the search prefix if the current node has one. Note that this is
|
|
// safe because if n.prefix is longer than the search slice prefixCmp would
|
|
// have been > 0 above and the method would have already returned.
|
|
search = search[len(n.prefix):]
|
|
|
|
if len(search) == 0 {
|
|
// We've exhausted the search key, but the current node is not an exact
|
|
// match or not a leaf. That means that the leaf value if it exists, and
|
|
// all child nodes must be strictly greater, the smallest key in this
|
|
// subtree must be the lower bound.
|
|
findMin(n)
|
|
return
|
|
}
|
|
|
|
// Otherwise, take the lower bound next edge.
|
|
idx, lbNode := n.getLowerBoundEdge(search[0])
|
|
if lbNode == nil {
|
|
return
|
|
}
|
|
|
|
// Create stack edges for the all strictly higher edges in this node.
|
|
if idx+1 < len(n.edges) {
|
|
i.stack = append(i.stack, n.edges[idx+1:])
|
|
}
|
|
|
|
// Recurse
|
|
n = lbNode
|
|
}
|
|
}
|
|
|
|
// Next returns the next node in order
|
|
func (i *Iterator) Next() ([]byte, interface{}, bool) {
|
|
// Initialize our stack if needed
|
|
if i.stack == nil && i.node != nil {
|
|
i.stack = []edges{
|
|
{
|
|
edge{node: i.node},
|
|
},
|
|
}
|
|
}
|
|
|
|
for len(i.stack) > 0 {
|
|
// Inspect the last element of the stack
|
|
n := len(i.stack)
|
|
last := i.stack[n-1]
|
|
elem := last[0].node
|
|
|
|
// Update the stack
|
|
if len(last) > 1 {
|
|
i.stack[n-1] = last[1:]
|
|
} else {
|
|
i.stack = i.stack[:n-1]
|
|
}
|
|
|
|
// Push the edges onto the frontier
|
|
if len(elem.edges) > 0 {
|
|
i.stack = append(i.stack, elem.edges)
|
|
}
|
|
|
|
// Return the leaf values if any
|
|
if elem.leaf != nil {
|
|
return elem.leaf.key, elem.leaf.val, true
|
|
}
|
|
}
|
|
return nil, nil, false
|
|
}
|