dnscrypt-proxy/vendor/github.com/quic-go/quic-go/sys_conn_oob.go

332 lines
9.4 KiB
Go

//go:build darwin || linux || freebsd
package quic
import (
"encoding/binary"
"errors"
"log"
"net"
"net/netip"
"os"
"strconv"
"sync"
"syscall"
"time"
"unsafe"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"golang.org/x/sys/unix"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/utils"
)
const (
ecnMask = 0x3
oobBufferSize = 128
)
// Contrary to what the naming suggests, the ipv{4,6}.Message is not dependent on the IP version.
// They're both just aliases for x/net/internal/socket.Message.
// This means we can use this struct to read from a socket that receives both IPv4 and IPv6 messages.
var _ ipv4.Message = ipv6.Message{}
type batchConn interface {
ReadBatch(ms []ipv4.Message, flags int) (int, error)
}
func inspectReadBuffer(c syscall.RawConn) (int, error) {
var size int
var serr error
if err := c.Control(func(fd uintptr) {
size, serr = unix.GetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_RCVBUF)
}); err != nil {
return 0, err
}
return size, serr
}
func inspectWriteBuffer(c syscall.RawConn) (int, error) {
var size int
var serr error
if err := c.Control(func(fd uintptr) {
size, serr = unix.GetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_SNDBUF)
}); err != nil {
return 0, err
}
return size, serr
}
func isECNDisabled() bool {
disabled, err := strconv.ParseBool(os.Getenv("QUIC_GO_DISABLE_ECN"))
return err == nil && disabled
}
type oobConn struct {
OOBCapablePacketConn
batchConn batchConn
readPos uint8
// Packets received from the kernel, but not yet returned by ReadPacket().
messages []ipv4.Message
buffers [batchSize]*packetBuffer
cap connCapabilities
}
var _ rawConn = &oobConn{}
func newConn(c OOBCapablePacketConn, supportsDF bool) (*oobConn, error) {
rawConn, err := c.SyscallConn()
if err != nil {
return nil, err
}
needsPacketInfo := false
if udpAddr, ok := c.LocalAddr().(*net.UDPAddr); ok && udpAddr.IP.IsUnspecified() {
needsPacketInfo = true
}
// We don't know if this a IPv4-only, IPv6-only or a IPv4-and-IPv6 connection.
// Try enabling receiving of ECN and packet info for both IP versions.
// We expect at least one of those syscalls to succeed.
var errECNIPv4, errECNIPv6, errPIIPv4, errPIIPv6 error
if err := rawConn.Control(func(fd uintptr) {
errECNIPv4 = unix.SetsockoptInt(int(fd), unix.IPPROTO_IP, unix.IP_RECVTOS, 1)
errECNIPv6 = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_RECVTCLASS, 1)
if needsPacketInfo {
errPIIPv4 = unix.SetsockoptInt(int(fd), unix.IPPROTO_IP, ipv4PKTINFO, 1)
errPIIPv6 = unix.SetsockoptInt(int(fd), unix.IPPROTO_IPV6, unix.IPV6_RECVPKTINFO, 1)
}
}); err != nil {
return nil, err
}
switch {
case errECNIPv4 == nil && errECNIPv6 == nil:
utils.DefaultLogger.Debugf("Activating reading of ECN bits for IPv4 and IPv6.")
case errECNIPv4 == nil && errECNIPv6 != nil:
utils.DefaultLogger.Debugf("Activating reading of ECN bits for IPv4.")
case errECNIPv4 != nil && errECNIPv6 == nil:
utils.DefaultLogger.Debugf("Activating reading of ECN bits for IPv6.")
case errECNIPv4 != nil && errECNIPv6 != nil:
return nil, errors.New("activating ECN failed for both IPv4 and IPv6")
}
if needsPacketInfo {
switch {
case errPIIPv4 == nil && errPIIPv6 == nil:
utils.DefaultLogger.Debugf("Activating reading of packet info for IPv4 and IPv6.")
case errPIIPv4 == nil && errPIIPv6 != nil:
utils.DefaultLogger.Debugf("Activating reading of packet info bits for IPv4.")
case errPIIPv4 != nil && errPIIPv6 == nil:
utils.DefaultLogger.Debugf("Activating reading of packet info bits for IPv6.")
case errPIIPv4 != nil && errPIIPv6 != nil:
return nil, errors.New("activating packet info failed for both IPv4 and IPv6")
}
}
// Allows callers to pass in a connection that already satisfies batchConn interface
// to make use of the optimisation. Otherwise, ipv4.NewPacketConn would unwrap the file descriptor
// via SyscallConn(), and read it that way, which might not be what the caller wants.
var bc batchConn
if ibc, ok := c.(batchConn); ok {
bc = ibc
} else {
bc = ipv4.NewPacketConn(c)
}
msgs := make([]ipv4.Message, batchSize)
for i := range msgs {
// preallocate the [][]byte
msgs[i].Buffers = make([][]byte, 1)
}
oobConn := &oobConn{
OOBCapablePacketConn: c,
batchConn: bc,
messages: msgs,
readPos: batchSize,
cap: connCapabilities{
DF: supportsDF,
GSO: isGSOSupported(rawConn),
ECN: !isECNDisabled(),
},
}
for i := 0; i < batchSize; i++ {
oobConn.messages[i].OOB = make([]byte, oobBufferSize)
}
return oobConn, nil
}
var invalidCmsgOnceV4, invalidCmsgOnceV6 sync.Once
func (c *oobConn) ReadPacket() (receivedPacket, error) {
if len(c.messages) == int(c.readPos) { // all messages read. Read the next batch of messages.
c.messages = c.messages[:batchSize]
// replace buffers data buffers up to the packet that has been consumed during the last ReadBatch call
for i := uint8(0); i < c.readPos; i++ {
buffer := getPacketBuffer()
buffer.Data = buffer.Data[:protocol.MaxPacketBufferSize]
c.buffers[i] = buffer
c.messages[i].Buffers[0] = c.buffers[i].Data
}
c.readPos = 0
n, err := c.batchConn.ReadBatch(c.messages, 0)
if n == 0 || err != nil {
return receivedPacket{}, err
}
c.messages = c.messages[:n]
}
msg := c.messages[c.readPos]
buffer := c.buffers[c.readPos]
c.readPos++
data := msg.OOB[:msg.NN]
p := receivedPacket{
remoteAddr: msg.Addr,
rcvTime: time.Now(),
data: msg.Buffers[0][:msg.N],
buffer: buffer,
}
for len(data) > 0 {
hdr, body, remainder, err := unix.ParseOneSocketControlMessage(data)
if err != nil {
return receivedPacket{}, err
}
if hdr.Level == unix.IPPROTO_IP {
switch hdr.Type {
case msgTypeIPTOS:
p.ecn = protocol.ParseECNHeaderBits(body[0] & ecnMask)
case ipv4PKTINFO:
ip, ifIndex, ok := parseIPv4PktInfo(body)
if ok {
p.info.addr = ip
p.info.ifIndex = ifIndex
} else {
invalidCmsgOnceV4.Do(func() {
log.Printf("Received invalid IPv4 packet info control message: %+x. "+
"This should never occur, please open a new issue and include details about the architecture.", body)
})
}
}
}
if hdr.Level == unix.IPPROTO_IPV6 {
switch hdr.Type {
case unix.IPV6_TCLASS:
p.ecn = protocol.ParseECNHeaderBits(body[0] & ecnMask)
case unix.IPV6_PKTINFO:
// struct in6_pktinfo {
// struct in6_addr ipi6_addr; /* src/dst IPv6 address */
// unsigned int ipi6_ifindex; /* send/recv interface index */
// };
if len(body) == 20 {
p.info.addr = netip.AddrFrom16(*(*[16]byte)(body[:16])).Unmap()
p.info.ifIndex = binary.LittleEndian.Uint32(body[16:])
} else {
invalidCmsgOnceV6.Do(func() {
log.Printf("Received invalid IPv6 packet info control message: %+x. "+
"This should never occur, please open a new issue and include details about the architecture.", body)
})
}
}
}
data = remainder
}
return p, nil
}
// WritePacket writes a new packet.
func (c *oobConn) WritePacket(b []byte, addr net.Addr, packetInfoOOB []byte, gsoSize uint16, ecn protocol.ECN) (int, error) {
oob := packetInfoOOB
if gsoSize > 0 {
if !c.capabilities().GSO {
panic("GSO disabled")
}
oob = appendUDPSegmentSizeMsg(oob, gsoSize)
}
if ecn != protocol.ECNUnsupported {
if !c.capabilities().ECN {
panic("tried to send a ECN-marked packet although ECN is disabled")
}
if remoteUDPAddr, ok := addr.(*net.UDPAddr); ok {
if remoteUDPAddr.IP.To4() != nil {
oob = appendIPv4ECNMsg(oob, ecn)
} else {
oob = appendIPv6ECNMsg(oob, ecn)
}
}
}
n, _, err := c.OOBCapablePacketConn.WriteMsgUDP(b, oob, addr.(*net.UDPAddr))
return n, err
}
func (c *oobConn) capabilities() connCapabilities {
return c.cap
}
type packetInfo struct {
addr netip.Addr
ifIndex uint32
}
func (info *packetInfo) OOB() []byte {
if info == nil {
return nil
}
if info.addr.Is4() {
ip := info.addr.As4()
// struct in_pktinfo {
// unsigned int ipi_ifindex; /* Interface index */
// struct in_addr ipi_spec_dst; /* Local address */
// struct in_addr ipi_addr; /* Header Destination address */
// };
cm := ipv4.ControlMessage{
Src: ip[:],
IfIndex: int(info.ifIndex),
}
return cm.Marshal()
} else if info.addr.Is6() {
ip := info.addr.As16()
// struct in6_pktinfo {
// struct in6_addr ipi6_addr; /* src/dst IPv6 address */
// unsigned int ipi6_ifindex; /* send/recv interface index */
// };
cm := ipv6.ControlMessage{
Src: ip[:],
IfIndex: int(info.ifIndex),
}
return cm.Marshal()
}
return nil
}
func appendIPv4ECNMsg(b []byte, val protocol.ECN) []byte {
startLen := len(b)
b = append(b, make([]byte, unix.CmsgSpace(ecnIPv4DataLen))...)
h := (*unix.Cmsghdr)(unsafe.Pointer(&b[startLen]))
h.Level = syscall.IPPROTO_IP
h.Type = unix.IP_TOS
h.SetLen(unix.CmsgLen(ecnIPv4DataLen))
// UnixRights uses the private `data` method, but I *think* this achieves the same goal.
offset := startLen + unix.CmsgSpace(0)
b[offset] = val.ToHeaderBits()
return b
}
func appendIPv6ECNMsg(b []byte, val protocol.ECN) []byte {
startLen := len(b)
const dataLen = 4
b = append(b, make([]byte, unix.CmsgSpace(dataLen))...)
h := (*unix.Cmsghdr)(unsafe.Pointer(&b[startLen]))
h.Level = syscall.IPPROTO_IPV6
h.Type = unix.IPV6_TCLASS
h.SetLen(unix.CmsgLen(dataLen))
// UnixRights uses the private `data` method, but I *think* this achieves the same goal.
offset := startLen + unix.CmsgSpace(0)
b[offset] = val.ToHeaderBits()
return b
}