dnscrypt-proxy/vendor/github.com/quic-go/quic-go/http3/server.go

812 lines
24 KiB
Go

package http3
import (
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"net/http"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/quic-go/quic-go"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/utils"
"github.com/quic-go/quic-go/quicvarint"
"github.com/quic-go/qpack"
)
// allows mocking of quic.Listen and quic.ListenAddr
var (
quicListen = func(conn net.PacketConn, tlsConf *tls.Config, config *quic.Config) (QUICEarlyListener, error) {
return quic.ListenEarly(conn, tlsConf, config)
}
quicListenAddr = func(addr string, tlsConf *tls.Config, config *quic.Config) (QUICEarlyListener, error) {
return quic.ListenAddrEarly(addr, tlsConf, config)
}
errPanicked = errors.New("panicked")
)
// NextProtoH3 is the ALPN protocol negotiated during the TLS handshake, for QUIC v1 and v2.
const NextProtoH3 = "h3"
// StreamType is the stream type of a unidirectional stream.
type StreamType uint64
const (
streamTypeControlStream = 0
streamTypePushStream = 1
streamTypeQPACKEncoderStream = 2
streamTypeQPACKDecoderStream = 3
)
// A QUICEarlyListener listens for incoming QUIC connections.
type QUICEarlyListener interface {
Accept(context.Context) (quic.EarlyConnection, error)
Addr() net.Addr
io.Closer
}
var _ QUICEarlyListener = &quic.EarlyListener{}
func versionToALPN(v protocol.Version) string {
//nolint:exhaustive // These are all the versions we care about.
switch v {
case protocol.Version1, protocol.Version2:
return NextProtoH3
default:
return ""
}
}
// ConfigureTLSConfig creates a new tls.Config which can be used
// to create a quic.Listener meant for serving http3. The created
// tls.Config adds the functionality of detecting the used QUIC version
// in order to set the correct ALPN value for the http3 connection.
func ConfigureTLSConfig(tlsConf *tls.Config) *tls.Config {
// The tls.Config used to setup the quic.Listener needs to have the GetConfigForClient callback set.
// That way, we can get the QUIC version and set the correct ALPN value.
return &tls.Config{
GetConfigForClient: func(ch *tls.ClientHelloInfo) (*tls.Config, error) {
// determine the ALPN from the QUIC version used
proto := NextProtoH3
val := ch.Context().Value(quic.QUICVersionContextKey)
if v, ok := val.(quic.Version); ok {
proto = versionToALPN(v)
}
config := tlsConf
if tlsConf.GetConfigForClient != nil {
getConfigForClient := tlsConf.GetConfigForClient
var err error
conf, err := getConfigForClient(ch)
if err != nil {
return nil, err
}
if conf != nil {
config = conf
}
}
if config == nil {
return nil, nil
}
config = config.Clone()
config.NextProtos = []string{proto}
return config, nil
},
}
}
// contextKey is a value for use with context.WithValue. It's used as
// a pointer so it fits in an interface{} without allocation.
type contextKey struct {
name string
}
func (k *contextKey) String() string { return "quic-go/http3 context value " + k.name }
// ServerContextKey is a context key. It can be used in HTTP
// handlers with Context.Value to access the server that
// started the handler. The associated value will be of
// type *http3.Server.
var ServerContextKey = &contextKey{"http3-server"}
// RemoteAddrContextKey is a context key. It can be used in
// HTTP handlers with Context.Value to access the remote
// address of the connection. The associated value will be of
// type net.Addr.
//
// Use this value instead of [http.Request.RemoteAddr] if you
// require access to the remote address of the connection rather
// than its string representation.
var RemoteAddrContextKey = &contextKey{"remote-addr"}
type requestError struct {
err error
streamErr ErrCode
connErr ErrCode
}
func newStreamError(code ErrCode, err error) requestError {
return requestError{err: err, streamErr: code}
}
func newConnError(code ErrCode, err error) requestError {
return requestError{err: err, connErr: code}
}
// listenerInfo contains info about specific listener added with addListener
type listenerInfo struct {
port int // 0 means that no info about port is available
}
// Server is a HTTP/3 server.
type Server struct {
// Addr optionally specifies the UDP address for the server to listen on,
// in the form "host:port".
//
// When used by ListenAndServe and ListenAndServeTLS methods, if empty,
// ":https" (port 443) is used. See net.Dial for details of the address
// format.
//
// Otherwise, if Port is not set and underlying QUIC listeners do not
// have valid port numbers, the port part is used in Alt-Svc headers set
// with SetQuicHeaders.
Addr string
// Port is used in Alt-Svc response headers set with SetQuicHeaders. If
// needed Port can be manually set when the Server is created.
//
// This is useful when a Layer 4 firewall is redirecting UDP traffic and
// clients must use a port different from the port the Server is
// listening on.
Port int
// TLSConfig provides a TLS configuration for use by server. It must be
// set for ListenAndServe and Serve methods.
TLSConfig *tls.Config
// QuicConfig provides the parameters for QUIC connection created with
// Serve. If nil, it uses reasonable default values.
//
// Configured versions are also used in Alt-Svc response header set with
// SetQuicHeaders.
QuicConfig *quic.Config
// Handler is the HTTP request handler to use. If not set, defaults to
// http.NotFound.
Handler http.Handler
// EnableDatagrams enables support for HTTP/3 datagrams.
// If set to true, QuicConfig.EnableDatagram will be set.
// See https://datatracker.ietf.org/doc/html/rfc9297.
EnableDatagrams bool
// MaxHeaderBytes controls the maximum number of bytes the server will
// read parsing the request HEADERS frame. It does not limit the size of
// the request body. If zero or negative, http.DefaultMaxHeaderBytes is
// used.
MaxHeaderBytes int
// AdditionalSettings specifies additional HTTP/3 settings.
// It is invalid to specify any settings defined by the HTTP/3 draft and the datagram draft.
AdditionalSettings map[uint64]uint64
// StreamHijacker, when set, is called for the first unknown frame parsed on a bidirectional stream.
// It is called right after parsing the frame type.
// If parsing the frame type fails, the error is passed to the callback.
// In that case, the frame type will not be set.
// Callers can either ignore the frame and return control of the stream back to HTTP/3
// (by returning hijacked false).
// Alternatively, callers can take over the QUIC stream (by returning hijacked true).
StreamHijacker func(FrameType, quic.Connection, quic.Stream, error) (hijacked bool, err error)
// UniStreamHijacker, when set, is called for unknown unidirectional stream of unknown stream type.
// If parsing the stream type fails, the error is passed to the callback.
// In that case, the stream type will not be set.
UniStreamHijacker func(StreamType, quic.Connection, quic.ReceiveStream, error) (hijacked bool)
// ConnContext optionally specifies a function that modifies
// the context used for a new connection c. The provided ctx
// has a ServerContextKey value.
ConnContext func(ctx context.Context, c quic.Connection) context.Context
mutex sync.RWMutex
listeners map[*QUICEarlyListener]listenerInfo
closed bool
altSvcHeader string
logger utils.Logger
}
// ListenAndServe listens on the UDP address s.Addr and calls s.Handler to handle HTTP/3 requests on incoming connections.
//
// If s.Addr is blank, ":https" is used.
func (s *Server) ListenAndServe() error {
return s.serveConn(s.TLSConfig, nil)
}
// ListenAndServeTLS listens on the UDP address s.Addr and calls s.Handler to handle HTTP/3 requests on incoming connections.
//
// If s.Addr is blank, ":https" is used.
func (s *Server) ListenAndServeTLS(certFile, keyFile string) error {
var err error
certs := make([]tls.Certificate, 1)
certs[0], err = tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
// We currently only use the cert-related stuff from tls.Config,
// so we don't need to make a full copy.
config := &tls.Config{
Certificates: certs,
}
return s.serveConn(config, nil)
}
// Serve an existing UDP connection.
// It is possible to reuse the same connection for outgoing connections.
// Closing the server does not close the connection.
func (s *Server) Serve(conn net.PacketConn) error {
return s.serveConn(s.TLSConfig, conn)
}
// ServeQUICConn serves a single QUIC connection.
func (s *Server) ServeQUICConn(conn quic.Connection) error {
s.mutex.Lock()
if s.logger == nil {
s.logger = utils.DefaultLogger.WithPrefix("server")
}
s.mutex.Unlock()
return s.handleConn(conn)
}
// ServeListener serves an existing QUIC listener.
// Make sure you use http3.ConfigureTLSConfig to configure a tls.Config
// and use it to construct a http3-friendly QUIC listener.
// Closing the server does close the listener.
// ServeListener always returns a non-nil error. After Shutdown or Close, the returned error is http.ErrServerClosed.
func (s *Server) ServeListener(ln QUICEarlyListener) error {
if err := s.addListener(&ln); err != nil {
return err
}
defer s.removeListener(&ln)
for {
conn, err := ln.Accept(context.Background())
if err == quic.ErrServerClosed {
return http.ErrServerClosed
}
if err != nil {
return err
}
go func() {
if err := s.handleConn(conn); err != nil {
s.logger.Debugf("handling connection failed: %s", err)
}
}()
}
}
var errServerWithoutTLSConfig = errors.New("use of http3.Server without TLSConfig")
func (s *Server) serveConn(tlsConf *tls.Config, conn net.PacketConn) error {
if tlsConf == nil {
return errServerWithoutTLSConfig
}
s.mutex.Lock()
closed := s.closed
s.mutex.Unlock()
if closed {
return http.ErrServerClosed
}
baseConf := ConfigureTLSConfig(tlsConf)
quicConf := s.QuicConfig
if quicConf == nil {
quicConf = &quic.Config{Allow0RTT: true}
} else {
quicConf = s.QuicConfig.Clone()
}
if s.EnableDatagrams {
quicConf.EnableDatagrams = true
}
var ln QUICEarlyListener
var err error
if conn == nil {
addr := s.Addr
if addr == "" {
addr = ":https"
}
ln, err = quicListenAddr(addr, baseConf, quicConf)
} else {
ln, err = quicListen(conn, baseConf, quicConf)
}
if err != nil {
return err
}
return s.ServeListener(ln)
}
func extractPort(addr string) (int, error) {
_, portStr, err := net.SplitHostPort(addr)
if err != nil {
return 0, err
}
portInt, err := net.LookupPort("tcp", portStr)
if err != nil {
return 0, err
}
return portInt, nil
}
func (s *Server) generateAltSvcHeader() {
if len(s.listeners) == 0 {
// Don't announce any ports since no one is listening for connections
s.altSvcHeader = ""
return
}
// This code assumes that we will use protocol.SupportedVersions if no quic.Config is passed.
supportedVersions := protocol.SupportedVersions
if s.QuicConfig != nil && len(s.QuicConfig.Versions) > 0 {
supportedVersions = s.QuicConfig.Versions
}
// keep track of which have been seen so we don't yield duplicate values
seen := make(map[string]struct{}, len(supportedVersions))
var versionStrings []string
for _, version := range supportedVersions {
if v := versionToALPN(version); len(v) > 0 {
if _, ok := seen[v]; !ok {
versionStrings = append(versionStrings, v)
seen[v] = struct{}{}
}
}
}
var altSvc []string
addPort := func(port int) {
for _, v := range versionStrings {
altSvc = append(altSvc, fmt.Sprintf(`%s=":%d"; ma=2592000`, v, port))
}
}
if s.Port != 0 {
// if Port is specified, we must use it instead of the
// listener addresses since there's a reason it's specified.
addPort(s.Port)
} else {
// if we have some listeners assigned, try to find ports
// which we can announce, otherwise nothing should be announced
validPortsFound := false
for _, info := range s.listeners {
if info.port != 0 {
addPort(info.port)
validPortsFound = true
}
}
if !validPortsFound {
if port, err := extractPort(s.Addr); err == nil {
addPort(port)
}
}
}
s.altSvcHeader = strings.Join(altSvc, ",")
}
// We store a pointer to interface in the map set. This is safe because we only
// call trackListener via Serve and can track+defer untrack the same pointer to
// local variable there. We never need to compare a Listener from another caller.
func (s *Server) addListener(l *QUICEarlyListener) error {
s.mutex.Lock()
defer s.mutex.Unlock()
if s.closed {
return http.ErrServerClosed
}
if s.logger == nil {
s.logger = utils.DefaultLogger.WithPrefix("server")
}
if s.listeners == nil {
s.listeners = make(map[*QUICEarlyListener]listenerInfo)
}
laddr := (*l).Addr()
if port, err := extractPort(laddr.String()); err == nil {
s.listeners[l] = listenerInfo{port}
} else {
s.logger.Errorf("Unable to extract port from listener %s, will not be announced using SetQuicHeaders: %s", laddr, err)
s.listeners[l] = listenerInfo{}
}
s.generateAltSvcHeader()
return nil
}
func (s *Server) removeListener(l *QUICEarlyListener) {
s.mutex.Lock()
defer s.mutex.Unlock()
delete(s.listeners, l)
s.generateAltSvcHeader()
}
func (s *Server) handleConn(conn quic.Connection) error {
decoder := qpack.NewDecoder(nil)
// send a SETTINGS frame
str, err := conn.OpenUniStream()
if err != nil {
return fmt.Errorf("opening the control stream failed: %w", err)
}
b := make([]byte, 0, 64)
b = quicvarint.Append(b, streamTypeControlStream) // stream type
b = (&settingsFrame{
Datagram: s.EnableDatagrams,
ExtendedConnect: true,
Other: s.AdditionalSettings,
}).Append(b)
str.Write(b)
go s.handleUnidirectionalStreams(conn)
// Process all requests immediately.
// It's the client's responsibility to decide which requests are eligible for 0-RTT.
for {
str, err := conn.AcceptStream(context.Background())
if err != nil {
var appErr *quic.ApplicationError
if errors.As(err, &appErr) && appErr.ErrorCode == quic.ApplicationErrorCode(ErrCodeNoError) {
return nil
}
return fmt.Errorf("accepting stream failed: %w", err)
}
go func() {
rerr := s.handleRequest(conn, str, decoder, func() {
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeFrameUnexpected), "")
})
if rerr.err == errHijacked {
return
}
if rerr.err != nil || rerr.streamErr != 0 || rerr.connErr != 0 {
s.logger.Debugf("Handling request failed: %s", err)
if rerr.streamErr != 0 {
str.CancelWrite(quic.StreamErrorCode(rerr.streamErr))
}
if rerr.connErr != 0 {
var reason string
if rerr.err != nil {
reason = rerr.err.Error()
}
conn.CloseWithError(quic.ApplicationErrorCode(rerr.connErr), reason)
}
return
}
str.Close()
}()
}
}
func (s *Server) handleUnidirectionalStreams(conn quic.Connection) {
var rcvdControlStream atomic.Bool
for {
str, err := conn.AcceptUniStream(context.Background())
if err != nil {
s.logger.Debugf("accepting unidirectional stream failed: %s", err)
return
}
go func(str quic.ReceiveStream) {
streamType, err := quicvarint.Read(quicvarint.NewReader(str))
if err != nil {
if s.UniStreamHijacker != nil && s.UniStreamHijacker(StreamType(streamType), conn, str, err) {
return
}
s.logger.Debugf("reading stream type on stream %d failed: %s", str.StreamID(), err)
return
}
// We're only interested in the control stream here.
switch streamType {
case streamTypeControlStream:
case streamTypeQPACKEncoderStream, streamTypeQPACKDecoderStream:
// Our QPACK implementation doesn't use the dynamic table yet.
// TODO: check that only one stream of each type is opened.
return
case streamTypePushStream: // only the server can push
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeStreamCreationError), "")
return
default:
if s.UniStreamHijacker != nil && s.UniStreamHijacker(StreamType(streamType), conn, str, nil) {
return
}
str.CancelRead(quic.StreamErrorCode(ErrCodeStreamCreationError))
return
}
// Only a single control stream is allowed.
if isFirstControlStr := rcvdControlStream.CompareAndSwap(false, true); !isFirstControlStr {
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeStreamCreationError), "duplicate control stream")
return
}
f, err := parseNextFrame(str, nil)
if err != nil {
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeFrameError), "")
return
}
sf, ok := f.(*settingsFrame)
if !ok {
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeMissingSettings), "")
return
}
if !sf.Datagram {
return
}
// If datagram support was enabled on our side as well as on the client side,
// we can expect it to have been negotiated both on the transport and on the HTTP/3 layer.
// Note: ConnectionState() will block until the handshake is complete (relevant when using 0-RTT).
if s.EnableDatagrams && !conn.ConnectionState().SupportsDatagrams {
conn.CloseWithError(quic.ApplicationErrorCode(ErrCodeSettingsError), "missing QUIC Datagram support")
}
}(str)
}
}
func (s *Server) maxHeaderBytes() uint64 {
if s.MaxHeaderBytes <= 0 {
return http.DefaultMaxHeaderBytes
}
return uint64(s.MaxHeaderBytes)
}
func (s *Server) handleRequest(conn quic.Connection, str quic.Stream, decoder *qpack.Decoder, onFrameError func()) requestError {
var ufh unknownFrameHandlerFunc
if s.StreamHijacker != nil {
ufh = func(ft FrameType, e error) (processed bool, err error) { return s.StreamHijacker(ft, conn, str, e) }
}
frame, err := parseNextFrame(str, ufh)
if err != nil {
if err == errHijacked {
return requestError{err: errHijacked}
}
return newStreamError(ErrCodeRequestIncomplete, err)
}
hf, ok := frame.(*headersFrame)
if !ok {
return newConnError(ErrCodeFrameUnexpected, errors.New("expected first frame to be a HEADERS frame"))
}
if hf.Length > s.maxHeaderBytes() {
return newStreamError(ErrCodeFrameError, fmt.Errorf("HEADERS frame too large: %d bytes (max: %d)", hf.Length, s.maxHeaderBytes()))
}
headerBlock := make([]byte, hf.Length)
if _, err := io.ReadFull(str, headerBlock); err != nil {
return newStreamError(ErrCodeRequestIncomplete, err)
}
hfs, err := decoder.DecodeFull(headerBlock)
if err != nil {
// TODO: use the right error code
return newConnError(ErrCodeGeneralProtocolError, err)
}
req, err := requestFromHeaders(hfs)
if err != nil {
return newStreamError(ErrCodeMessageError, err)
}
connState := conn.ConnectionState().TLS
req.TLS = &connState
req.RemoteAddr = conn.RemoteAddr().String()
// Check that the client doesn't send more data in DATA frames than indicated by the Content-Length header (if set).
// See section 4.1.2 of RFC 9114.
var httpStr Stream
if _, ok := req.Header["Content-Length"]; ok && req.ContentLength >= 0 {
httpStr = newLengthLimitedStream(newStream(str, onFrameError), req.ContentLength)
} else {
httpStr = newStream(str, onFrameError)
}
body := newRequestBody(httpStr)
req.Body = body
if s.logger.Debug() {
s.logger.Infof("%s %s%s, on stream %d", req.Method, req.Host, req.RequestURI, str.StreamID())
} else {
s.logger.Infof("%s %s%s", req.Method, req.Host, req.RequestURI)
}
ctx := str.Context()
ctx = context.WithValue(ctx, ServerContextKey, s)
ctx = context.WithValue(ctx, http.LocalAddrContextKey, conn.LocalAddr())
ctx = context.WithValue(ctx, RemoteAddrContextKey, conn.RemoteAddr())
if s.ConnContext != nil {
ctx = s.ConnContext(ctx, conn)
if ctx == nil {
panic("http3: ConnContext returned nil")
}
}
req = req.WithContext(ctx)
r := newResponseWriter(str, conn, s.logger)
if req.Method == http.MethodHead {
r.isHead = true
}
handler := s.Handler
if handler == nil {
handler = http.DefaultServeMux
}
var panicked bool
func() {
defer func() {
if p := recover(); p != nil {
panicked = true
if p == http.ErrAbortHandler {
return
}
// Copied from net/http/server.go
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
s.logger.Errorf("http: panic serving: %v\n%s", p, buf)
}
}()
handler.ServeHTTP(r, req)
}()
if body.wasStreamHijacked() {
return requestError{err: errHijacked}
}
// only write response when there is no panic
if !panicked {
// response not written to the client yet, set Content-Length
if !r.written {
if _, haveCL := r.header["Content-Length"]; !haveCL {
r.header.Set("Content-Length", strconv.FormatInt(r.numWritten, 10))
}
}
r.Flush()
}
// If the EOF was read by the handler, CancelRead() is a no-op.
str.CancelRead(quic.StreamErrorCode(ErrCodeNoError))
// abort the stream when there is a panic
if panicked {
return newStreamError(ErrCodeInternalError, errPanicked)
}
return requestError{}
}
// Close the server immediately, aborting requests and sending CONNECTION_CLOSE frames to connected clients.
// Close in combination with ListenAndServe() (instead of Serve()) may race if it is called before a UDP socket is established.
func (s *Server) Close() error {
s.mutex.Lock()
defer s.mutex.Unlock()
s.closed = true
var err error
for ln := range s.listeners {
if cerr := (*ln).Close(); cerr != nil && err == nil {
err = cerr
}
}
return err
}
// CloseGracefully shuts down the server gracefully. The server sends a GOAWAY frame first, then waits for either timeout to trigger, or for all running requests to complete.
// CloseGracefully in combination with ListenAndServe() (instead of Serve()) may race if it is called before a UDP socket is established.
func (s *Server) CloseGracefully(timeout time.Duration) error {
// TODO: implement
return nil
}
// ErrNoAltSvcPort is the error returned by SetQuicHeaders when no port was found
// for Alt-Svc to announce. This can happen if listening on a PacketConn without a port
// (UNIX socket, for example) and no port is specified in Server.Port or Server.Addr.
var ErrNoAltSvcPort = errors.New("no port can be announced, specify it explicitly using Server.Port or Server.Addr")
// SetQuicHeaders can be used to set the proper headers that announce that this server supports HTTP/3.
// The values set by default advertise all of the ports the server is listening on, but can be
// changed to a specific port by setting Server.Port before launching the serverr.
// If no listener's Addr().String() returns an address with a valid port, Server.Addr will be used
// to extract the port, if specified.
// For example, a server launched using ListenAndServe on an address with port 443 would set:
//
// Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
func (s *Server) SetQuicHeaders(hdr http.Header) error {
s.mutex.RLock()
defer s.mutex.RUnlock()
if s.altSvcHeader == "" {
return ErrNoAltSvcPort
}
// use the map directly to avoid constant canonicalization
// since the key is already canonicalized
hdr["Alt-Svc"] = append(hdr["Alt-Svc"], s.altSvcHeader)
return nil
}
// ListenAndServeQUIC listens on the UDP network address addr and calls the
// handler for HTTP/3 requests on incoming connections. http.DefaultServeMux is
// used when handler is nil.
func ListenAndServeQUIC(addr, certFile, keyFile string, handler http.Handler) error {
server := &Server{
Addr: addr,
Handler: handler,
}
return server.ListenAndServeTLS(certFile, keyFile)
}
// ListenAndServe listens on the given network address for both TLS/TCP and QUIC
// connections in parallel. It returns if one of the two returns an error.
// http.DefaultServeMux is used when handler is nil.
// The correct Alt-Svc headers for QUIC are set.
func ListenAndServe(addr, certFile, keyFile string, handler http.Handler) error {
// Load certs
var err error
certs := make([]tls.Certificate, 1)
certs[0], err = tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
// We currently only use the cert-related stuff from tls.Config,
// so we don't need to make a full copy.
config := &tls.Config{
Certificates: certs,
}
if addr == "" {
addr = ":https"
}
// Open the listeners
udpAddr, err := net.ResolveUDPAddr("udp", addr)
if err != nil {
return err
}
udpConn, err := net.ListenUDP("udp", udpAddr)
if err != nil {
return err
}
defer udpConn.Close()
if handler == nil {
handler = http.DefaultServeMux
}
// Start the servers
quicServer := &Server{
TLSConfig: config,
Handler: handler,
}
hErr := make(chan error, 1)
qErr := make(chan error, 1)
go func() {
hErr <- http.ListenAndServeTLS(addr, certFile, keyFile, http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
quicServer.SetQuicHeaders(w.Header())
handler.ServeHTTP(w, r)
}))
}()
go func() {
qErr <- quicServer.Serve(udpConn)
}()
select {
case err := <-hErr:
quicServer.Close()
return err
case err := <-qErr:
// Cannot close the HTTP server or wait for requests to complete properly :/
return err
}
}