mirror of https://github.com/mstorsjo/fdk-aac.git
814 lines
31 KiB
C++
814 lines
31 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/******************* Library for basic calculation routines ********************
|
|
|
|
Author(s): Markus Lohwasser
|
|
|
|
Description: FDK Tools Hybrid Filterbank
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "FDK_hybrid.h"
|
|
|
|
#include "fft.h"
|
|
|
|
/*--------------- defines -----------------------------*/
|
|
#define FFT_IDX_R(a) (2 * a)
|
|
#define FFT_IDX_I(a) (2 * a + 1)
|
|
|
|
#define HYB_COEF8_0 (0.00746082949812f)
|
|
#define HYB_COEF8_1 (0.02270420949825f)
|
|
#define HYB_COEF8_2 (0.04546865930473f)
|
|
#define HYB_COEF8_3 (0.07266113929591f)
|
|
#define HYB_COEF8_4 (0.09885108575264f)
|
|
#define HYB_COEF8_5 (0.11793710567217f)
|
|
#define HYB_COEF8_6 (0.12500000000000f)
|
|
#define HYB_COEF8_7 (HYB_COEF8_5)
|
|
#define HYB_COEF8_8 (HYB_COEF8_4)
|
|
#define HYB_COEF8_9 (HYB_COEF8_3)
|
|
#define HYB_COEF8_10 (HYB_COEF8_2)
|
|
#define HYB_COEF8_11 (HYB_COEF8_1)
|
|
#define HYB_COEF8_12 (HYB_COEF8_0)
|
|
|
|
/*--------------- structure definitions ---------------*/
|
|
|
|
#if defined(ARCH_PREFER_MULT_32x16)
|
|
#define FIXP_HTB FIXP_SGL /* SGL data type. */
|
|
#define FIXP_HTP FIXP_SPK /* Packed SGL data type. */
|
|
#define HTC(a) (FX_DBL2FXCONST_SGL(a)) /* Cast to SGL */
|
|
#define FL2FXCONST_HTB FL2FXCONST_SGL
|
|
#else
|
|
#define FIXP_HTB FIXP_DBL /* SGL data type. */
|
|
#define FIXP_HTP FIXP_DPK /* Packed DBL data type. */
|
|
#define HTC(a) ((FIXP_DBL)(LONG)(a)) /* Cast to DBL */
|
|
#define FL2FXCONST_HTB FL2FXCONST_DBL
|
|
#endif
|
|
|
|
#define HTCP(real, imag) \
|
|
{ \
|
|
{ HTC(real), HTC(imag) } \
|
|
} /* How to arrange the packed values. */
|
|
|
|
struct FDK_HYBRID_SETUP {
|
|
UCHAR nrQmfBands; /*!< Number of QMF bands to be converted to hybrid. */
|
|
UCHAR nHybBands[3]; /*!< Number of Hybrid bands generated by nrQmfBands. */
|
|
SCHAR kHybrid[3]; /*!< Filter configuration of each QMF band. */
|
|
UCHAR protoLen; /*!< Prototype filter length. */
|
|
UCHAR filterDelay; /*!< Delay caused by hybrid filter. */
|
|
const INT
|
|
*pReadIdxTable; /*!< Helper table to access input data ringbuffer. */
|
|
};
|
|
|
|
/*--------------- constants ---------------------------*/
|
|
static const INT ringbuffIdxTab[2 * 13] = {0, 1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 0, 1, 2, 3, 4,
|
|
5, 6, 7, 8, 9, 10, 11, 12};
|
|
|
|
static const FDK_HYBRID_SETUP setup_3_16 = {3, {8, 4, 4}, {8, 4, 4},
|
|
13, (13 - 1) / 2, ringbuffIdxTab};
|
|
static const FDK_HYBRID_SETUP setup_3_12 = {3, {8, 2, 2}, {8, 2, 2},
|
|
13, (13 - 1) / 2, ringbuffIdxTab};
|
|
static const FDK_HYBRID_SETUP setup_3_10 = {3, {6, 2, 2}, {-8, -2, 2},
|
|
13, (13 - 1) / 2, ringbuffIdxTab};
|
|
|
|
static const FIXP_HTP HybFilterCoef8[] = {
|
|
HTCP(0x10000000, 0x00000000), HTCP(0x0df26407, 0xfa391882),
|
|
HTCP(0xff532109, 0x00acdef7), HTCP(0x08f26d36, 0xf70d92ca),
|
|
HTCP(0xfee34b5f, 0x02af570f), HTCP(0x038f276e, 0xf7684793),
|
|
HTCP(0x00000000, 0x05d1eac2), HTCP(0x00000000, 0x05d1eac2),
|
|
HTCP(0x038f276e, 0x0897b86d), HTCP(0xfee34b5f, 0xfd50a8f1),
|
|
HTCP(0x08f26d36, 0x08f26d36), HTCP(0xff532109, 0xff532109),
|
|
HTCP(0x0df26407, 0x05c6e77e)};
|
|
|
|
static const FIXP_HTB HybFilterCoef2[3] = {FL2FXCONST_HTB(0.01899487526049f),
|
|
FL2FXCONST_HTB(-0.07293139167538f),
|
|
FL2FXCONST_HTB(0.30596630545168f)};
|
|
|
|
static const FIXP_HTB HybFilterCoef4[13] = {FL2FXCONST_HTB(-0.00305151927305f),
|
|
FL2FXCONST_HTB(-0.00794862316203f),
|
|
FL2FXCONST_HTB(0.0f),
|
|
FL2FXCONST_HTB(0.04318924038756f),
|
|
FL2FXCONST_HTB(0.12542448210445f),
|
|
FL2FXCONST_HTB(0.21227807049160f),
|
|
FL2FXCONST_HTB(0.25f),
|
|
FL2FXCONST_HTB(0.21227807049160f),
|
|
FL2FXCONST_HTB(0.12542448210445f),
|
|
FL2FXCONST_HTB(0.04318924038756f),
|
|
FL2FXCONST_HTB(0.0f),
|
|
FL2FXCONST_HTB(-0.00794862316203f),
|
|
FL2FXCONST_HTB(-0.00305151927305f)};
|
|
|
|
/*--------------- function declarations ---------------*/
|
|
static INT kChannelFiltering(const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
const INT *const pReadIdx,
|
|
FIXP_DBL *const mHybridReal,
|
|
FIXP_DBL *const mHybridImag,
|
|
const SCHAR hybridConfig);
|
|
|
|
/*--------------- function definitions ----------------*/
|
|
|
|
INT FDKhybridAnalysisOpen(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
|
|
FIXP_DBL *const pLFmemory, const UINT LFmemorySize,
|
|
FIXP_DBL *const pHFmemory, const UINT HFmemorySize) {
|
|
INT err = 0;
|
|
|
|
/* Save pointer to extern memory. */
|
|
hAnalysisHybFilter->pLFmemory = pLFmemory;
|
|
hAnalysisHybFilter->LFmemorySize = LFmemorySize;
|
|
|
|
hAnalysisHybFilter->pHFmemory = pHFmemory;
|
|
hAnalysisHybFilter->HFmemorySize = HFmemorySize;
|
|
|
|
return err;
|
|
}
|
|
|
|
INT FDKhybridAnalysisInit(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
|
|
const FDK_HYBRID_MODE mode, const INT qmfBands,
|
|
const INT cplxBands, const INT initStatesFlag) {
|
|
int k;
|
|
INT err = 0;
|
|
FIXP_DBL *pMem = NULL;
|
|
HANDLE_FDK_HYBRID_SETUP setup = NULL;
|
|
|
|
switch (mode) {
|
|
case THREE_TO_TEN:
|
|
setup = &setup_3_10;
|
|
break;
|
|
case THREE_TO_TWELVE:
|
|
setup = &setup_3_12;
|
|
break;
|
|
case THREE_TO_SIXTEEN:
|
|
setup = &setup_3_16;
|
|
break;
|
|
default:
|
|
err = -1;
|
|
goto bail;
|
|
}
|
|
|
|
/* Initialize handle. */
|
|
hAnalysisHybFilter->pSetup = setup;
|
|
if (initStatesFlag) {
|
|
hAnalysisHybFilter->bufferLFpos = setup->protoLen - 1;
|
|
hAnalysisHybFilter->bufferHFpos = 0;
|
|
}
|
|
hAnalysisHybFilter->nrBands = qmfBands;
|
|
hAnalysisHybFilter->cplxBands = cplxBands;
|
|
hAnalysisHybFilter->hfMode = 0;
|
|
|
|
/* Check available memory. */
|
|
if (((2 * setup->nrQmfBands * setup->protoLen * sizeof(FIXP_DBL)) >
|
|
hAnalysisHybFilter->LFmemorySize)) {
|
|
err = -2;
|
|
goto bail;
|
|
}
|
|
if (hAnalysisHybFilter->HFmemorySize != 0) {
|
|
if (((setup->filterDelay *
|
|
((qmfBands - setup->nrQmfBands) + (cplxBands - setup->nrQmfBands)) *
|
|
sizeof(FIXP_DBL)) > hAnalysisHybFilter->HFmemorySize)) {
|
|
err = -3;
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
/* Distribute LF memory. */
|
|
pMem = hAnalysisHybFilter->pLFmemory;
|
|
for (k = 0; k < setup->nrQmfBands; k++) {
|
|
hAnalysisHybFilter->bufferLFReal[k] = pMem;
|
|
pMem += setup->protoLen;
|
|
hAnalysisHybFilter->bufferLFImag[k] = pMem;
|
|
pMem += setup->protoLen;
|
|
}
|
|
|
|
/* Distribute HF memory. */
|
|
if (hAnalysisHybFilter->HFmemorySize != 0) {
|
|
pMem = hAnalysisHybFilter->pHFmemory;
|
|
for (k = 0; k < setup->filterDelay; k++) {
|
|
hAnalysisHybFilter->bufferHFReal[k] = pMem;
|
|
pMem += (qmfBands - setup->nrQmfBands);
|
|
hAnalysisHybFilter->bufferHFImag[k] = pMem;
|
|
pMem += (cplxBands - setup->nrQmfBands);
|
|
}
|
|
}
|
|
|
|
if (initStatesFlag) {
|
|
/* Clear LF buffer */
|
|
for (k = 0; k < setup->nrQmfBands; k++) {
|
|
FDKmemclear(hAnalysisHybFilter->bufferLFReal[k],
|
|
setup->protoLen * sizeof(FIXP_DBL));
|
|
FDKmemclear(hAnalysisHybFilter->bufferLFImag[k],
|
|
setup->protoLen * sizeof(FIXP_DBL));
|
|
}
|
|
|
|
if (hAnalysisHybFilter->HFmemorySize != 0) {
|
|
if (qmfBands > setup->nrQmfBands) {
|
|
/* Clear HF buffer */
|
|
for (k = 0; k < setup->filterDelay; k++) {
|
|
FDKmemclear(hAnalysisHybFilter->bufferHFReal[k],
|
|
(qmfBands - setup->nrQmfBands) * sizeof(FIXP_DBL));
|
|
FDKmemclear(hAnalysisHybFilter->bufferHFImag[k],
|
|
(cplxBands - setup->nrQmfBands) * sizeof(FIXP_DBL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bail:
|
|
return err;
|
|
}
|
|
|
|
INT FDKhybridAnalysisScaleStates(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
|
|
const INT scalingValue) {
|
|
INT err = 0;
|
|
|
|
if (hAnalysisHybFilter == NULL) {
|
|
err = 1; /* invalid handle */
|
|
} else {
|
|
int k;
|
|
HANDLE_FDK_HYBRID_SETUP setup = hAnalysisHybFilter->pSetup;
|
|
|
|
/* Scale LF buffer */
|
|
for (k = 0; k < setup->nrQmfBands; k++) {
|
|
scaleValues(hAnalysisHybFilter->bufferLFReal[k], setup->protoLen,
|
|
scalingValue);
|
|
scaleValues(hAnalysisHybFilter->bufferLFImag[k], setup->protoLen,
|
|
scalingValue);
|
|
}
|
|
if (hAnalysisHybFilter->nrBands > setup->nrQmfBands) {
|
|
/* Scale HF buffer */
|
|
for (k = 0; k < setup->filterDelay; k++) {
|
|
scaleValues(hAnalysisHybFilter->bufferHFReal[k],
|
|
(hAnalysisHybFilter->nrBands - setup->nrQmfBands),
|
|
scalingValue);
|
|
scaleValues(hAnalysisHybFilter->bufferHFImag[k],
|
|
(hAnalysisHybFilter->cplxBands - setup->nrQmfBands),
|
|
scalingValue);
|
|
}
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
INT FDKhybridAnalysisApply(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
|
|
const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
FIXP_DBL *const pHybridReal,
|
|
FIXP_DBL *const pHybridImag) {
|
|
int k, hybOffset = 0;
|
|
INT err = 0;
|
|
const int nrQmfBandsLF =
|
|
hAnalysisHybFilter->pSetup
|
|
->nrQmfBands; /* number of QMF bands to be converted to hybrid */
|
|
|
|
const int writIndex = hAnalysisHybFilter->bufferLFpos;
|
|
int readIndex = hAnalysisHybFilter->bufferLFpos;
|
|
|
|
if (++readIndex >= hAnalysisHybFilter->pSetup->protoLen) readIndex = 0;
|
|
const INT *pBufferLFreadIdx =
|
|
&hAnalysisHybFilter->pSetup->pReadIdxTable[readIndex];
|
|
|
|
/*
|
|
* LF buffer.
|
|
*/
|
|
for (k = 0; k < nrQmfBandsLF; k++) {
|
|
/* New input sample. */
|
|
hAnalysisHybFilter->bufferLFReal[k][writIndex] = pQmfReal[k];
|
|
hAnalysisHybFilter->bufferLFImag[k][writIndex] = pQmfImag[k];
|
|
|
|
/* Perform hybrid filtering. */
|
|
err |=
|
|
kChannelFiltering(hAnalysisHybFilter->bufferLFReal[k],
|
|
hAnalysisHybFilter->bufferLFImag[k], pBufferLFreadIdx,
|
|
pHybridReal + hybOffset, pHybridImag + hybOffset,
|
|
hAnalysisHybFilter->pSetup->kHybrid[k]);
|
|
|
|
hybOffset += hAnalysisHybFilter->pSetup->nHybBands[k];
|
|
}
|
|
|
|
hAnalysisHybFilter->bufferLFpos =
|
|
readIndex; /* Index where to write next input sample. */
|
|
|
|
if (hAnalysisHybFilter->nrBands > nrQmfBandsLF) {
|
|
/*
|
|
* HF buffer.
|
|
*/
|
|
if (hAnalysisHybFilter->hfMode != 0) {
|
|
/* HF delay compensation was applied outside. */
|
|
FDKmemcpy(
|
|
pHybridReal + hybOffset, &pQmfReal[nrQmfBandsLF],
|
|
(hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
FDKmemcpy(
|
|
pHybridImag + hybOffset, &pQmfImag[nrQmfBandsLF],
|
|
(hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
} else {
|
|
FDK_ASSERT(hAnalysisHybFilter->HFmemorySize != 0);
|
|
/* HF delay compensation, filterlength/2. */
|
|
FDKmemcpy(
|
|
pHybridReal + hybOffset,
|
|
hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos],
|
|
(hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
FDKmemcpy(
|
|
pHybridImag + hybOffset,
|
|
hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos],
|
|
(hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
|
|
FDKmemcpy(
|
|
hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos],
|
|
&pQmfReal[nrQmfBandsLF],
|
|
(hAnalysisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
FDKmemcpy(
|
|
hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos],
|
|
&pQmfImag[nrQmfBandsLF],
|
|
(hAnalysisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
|
|
if (++hAnalysisHybFilter->bufferHFpos >=
|
|
hAnalysisHybFilter->pSetup->filterDelay)
|
|
hAnalysisHybFilter->bufferHFpos = 0;
|
|
}
|
|
} /* process HF part*/
|
|
|
|
return err;
|
|
}
|
|
|
|
INT FDKhybridAnalysisClose(HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter) {
|
|
INT err = 0;
|
|
|
|
if (hAnalysisHybFilter != NULL) {
|
|
hAnalysisHybFilter->pLFmemory = NULL;
|
|
hAnalysisHybFilter->pHFmemory = NULL;
|
|
hAnalysisHybFilter->LFmemorySize = 0;
|
|
hAnalysisHybFilter->HFmemorySize = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
INT FDKhybridSynthesisInit(HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
|
|
const FDK_HYBRID_MODE mode, const INT qmfBands,
|
|
const INT cplxBands) {
|
|
INT err = 0;
|
|
HANDLE_FDK_HYBRID_SETUP setup = NULL;
|
|
|
|
switch (mode) {
|
|
case THREE_TO_TEN:
|
|
setup = &setup_3_10;
|
|
break;
|
|
case THREE_TO_TWELVE:
|
|
setup = &setup_3_12;
|
|
break;
|
|
case THREE_TO_SIXTEEN:
|
|
setup = &setup_3_16;
|
|
break;
|
|
default:
|
|
err = -1;
|
|
goto bail;
|
|
}
|
|
|
|
hSynthesisHybFilter->pSetup = setup;
|
|
hSynthesisHybFilter->nrBands = qmfBands;
|
|
hSynthesisHybFilter->cplxBands = cplxBands;
|
|
|
|
bail:
|
|
return err;
|
|
}
|
|
|
|
void FDKhybridSynthesisApply(HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
|
|
const FIXP_DBL *const pHybridReal,
|
|
const FIXP_DBL *const pHybridImag,
|
|
FIXP_DBL *const pQmfReal,
|
|
FIXP_DBL *const pQmfImag) {
|
|
int k, n, hybOffset = 0;
|
|
const INT nrQmfBandsLF = hSynthesisHybFilter->pSetup->nrQmfBands;
|
|
|
|
/*
|
|
* LF buffer.
|
|
*/
|
|
for (k = 0; k < nrQmfBandsLF; k++) {
|
|
const int nHybBands = hSynthesisHybFilter->pSetup->nHybBands[k];
|
|
|
|
FIXP_DBL accu1 = FL2FXCONST_DBL(0.f);
|
|
FIXP_DBL accu2 = FL2FXCONST_DBL(0.f);
|
|
|
|
/* Perform hybrid filtering. */
|
|
for (n = 0; n < nHybBands; n++) {
|
|
accu1 += pHybridReal[hybOffset + n];
|
|
accu2 += pHybridImag[hybOffset + n];
|
|
}
|
|
pQmfReal[k] = accu1;
|
|
pQmfImag[k] = accu2;
|
|
|
|
hybOffset += nHybBands;
|
|
}
|
|
|
|
if (hSynthesisHybFilter->nrBands > nrQmfBandsLF) {
|
|
/*
|
|
* HF buffer.
|
|
*/
|
|
FDKmemcpy(&pQmfReal[nrQmfBandsLF], &pHybridReal[hybOffset],
|
|
(hSynthesisHybFilter->nrBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
FDKmemcpy(
|
|
&pQmfImag[nrQmfBandsLF], &pHybridImag[hybOffset],
|
|
(hSynthesisHybFilter->cplxBands - nrQmfBandsLF) * sizeof(FIXP_DBL));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void dualChannelFiltering(const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
const INT *const pReadIdx,
|
|
FIXP_DBL *const mHybridReal,
|
|
FIXP_DBL *const mHybridImag,
|
|
const INT invert) {
|
|
FIXP_DBL r1, r6;
|
|
FIXP_DBL i1, i6;
|
|
|
|
const FIXP_HTB f0 = HybFilterCoef2[0]; /* corresponds to p1 and p11 */
|
|
const FIXP_HTB f1 = HybFilterCoef2[1]; /* corresponds to p3 and p9 */
|
|
const FIXP_HTB f2 = HybFilterCoef2[2]; /* corresponds to p5 and p7 */
|
|
|
|
/* symmetric filter coefficients */
|
|
r1 = fMultDiv2(f0, pQmfReal[pReadIdx[1]]) +
|
|
fMultDiv2(f0, pQmfReal[pReadIdx[11]]);
|
|
i1 = fMultDiv2(f0, pQmfImag[pReadIdx[1]]) +
|
|
fMultDiv2(f0, pQmfImag[pReadIdx[11]]);
|
|
r1 += fMultDiv2(f1, pQmfReal[pReadIdx[3]]) +
|
|
fMultDiv2(f1, pQmfReal[pReadIdx[9]]);
|
|
i1 += fMultDiv2(f1, pQmfImag[pReadIdx[3]]) +
|
|
fMultDiv2(f1, pQmfImag[pReadIdx[9]]);
|
|
r1 += fMultDiv2(f2, pQmfReal[pReadIdx[5]]) +
|
|
fMultDiv2(f2, pQmfReal[pReadIdx[7]]);
|
|
i1 += fMultDiv2(f2, pQmfImag[pReadIdx[5]]) +
|
|
fMultDiv2(f2, pQmfImag[pReadIdx[7]]);
|
|
|
|
r6 = pQmfReal[pReadIdx[6]] >> 2;
|
|
i6 = pQmfImag[pReadIdx[6]] >> 2;
|
|
|
|
FDK_ASSERT((invert == 0) || (invert == 1));
|
|
mHybridReal[0 + invert] = (r6 + r1) << 1;
|
|
mHybridImag[0 + invert] = (i6 + i1) << 1;
|
|
|
|
mHybridReal[1 - invert] = (r6 - r1) << 1;
|
|
mHybridImag[1 - invert] = (i6 - i1) << 1;
|
|
}
|
|
|
|
static void fourChannelFiltering(const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
const INT *const pReadIdx,
|
|
FIXP_DBL *const mHybridReal,
|
|
FIXP_DBL *const mHybridImag,
|
|
const INT invert) {
|
|
const FIXP_HTB *p = HybFilterCoef4;
|
|
|
|
FIXP_DBL fft[8];
|
|
|
|
static const FIXP_DBL cr[13] = {
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
|
|
FL2FXCONST_DBL(1.f), FL2FXCONST_DBL(0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f)};
|
|
static const FIXP_DBL ci[13] = {
|
|
FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
|
|
FL2FXCONST_DBL(1.f), FL2FXCONST_DBL(0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(-1.f), FL2FXCONST_DBL(-0.70710678118655f),
|
|
FL2FXCONST_DBL(0.f), FL2FXCONST_DBL(0.70710678118655f),
|
|
FL2FXCONST_DBL(1.f)};
|
|
|
|
/* FIR filter. */
|
|
/* pre twiddeling with pre-twiddling coefficients c[n] */
|
|
/* multiplication with filter coefficients p[n] */
|
|
/* hint: (a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c) */
|
|
/* write to fft coefficient n' */
|
|
fft[FFT_IDX_R(0)] =
|
|
(fMult(p[10], (fMultSub(fMultDiv2(cr[2], pQmfReal[pReadIdx[2]]), ci[2],
|
|
pQmfImag[pReadIdx[2]]))) +
|
|
fMult(p[6], (fMultSub(fMultDiv2(cr[6], pQmfReal[pReadIdx[6]]), ci[6],
|
|
pQmfImag[pReadIdx[6]]))) +
|
|
fMult(p[2], (fMultSub(fMultDiv2(cr[10], pQmfReal[pReadIdx[10]]), ci[10],
|
|
pQmfImag[pReadIdx[10]]))));
|
|
fft[FFT_IDX_I(0)] =
|
|
(fMult(p[10], (fMultAdd(fMultDiv2(ci[2], pQmfReal[pReadIdx[2]]), cr[2],
|
|
pQmfImag[pReadIdx[2]]))) +
|
|
fMult(p[6], (fMultAdd(fMultDiv2(ci[6], pQmfReal[pReadIdx[6]]), cr[6],
|
|
pQmfImag[pReadIdx[6]]))) +
|
|
fMult(p[2], (fMultAdd(fMultDiv2(ci[10], pQmfReal[pReadIdx[10]]), cr[10],
|
|
pQmfImag[pReadIdx[10]]))));
|
|
|
|
/* twiddle dee dum */
|
|
fft[FFT_IDX_R(1)] =
|
|
(fMult(p[9], (fMultSub(fMultDiv2(cr[3], pQmfReal[pReadIdx[3]]), ci[3],
|
|
pQmfImag[pReadIdx[3]]))) +
|
|
fMult(p[5], (fMultSub(fMultDiv2(cr[7], pQmfReal[pReadIdx[7]]), ci[7],
|
|
pQmfImag[pReadIdx[7]]))) +
|
|
fMult(p[1], (fMultSub(fMultDiv2(cr[11], pQmfReal[pReadIdx[11]]), ci[11],
|
|
pQmfImag[pReadIdx[11]]))));
|
|
fft[FFT_IDX_I(1)] =
|
|
(fMult(p[9], (fMultAdd(fMultDiv2(ci[3], pQmfReal[pReadIdx[3]]), cr[3],
|
|
pQmfImag[pReadIdx[3]]))) +
|
|
fMult(p[5], (fMultAdd(fMultDiv2(ci[7], pQmfReal[pReadIdx[7]]), cr[7],
|
|
pQmfImag[pReadIdx[7]]))) +
|
|
fMult(p[1], (fMultAdd(fMultDiv2(ci[11], pQmfReal[pReadIdx[11]]), cr[11],
|
|
pQmfImag[pReadIdx[11]]))));
|
|
|
|
/* twiddle dee dee */
|
|
fft[FFT_IDX_R(2)] =
|
|
(fMult(p[12], (fMultSub(fMultDiv2(cr[0], pQmfReal[pReadIdx[0]]), ci[0],
|
|
pQmfImag[pReadIdx[0]]))) +
|
|
fMult(p[8], (fMultSub(fMultDiv2(cr[4], pQmfReal[pReadIdx[4]]), ci[4],
|
|
pQmfImag[pReadIdx[4]]))) +
|
|
fMult(p[4], (fMultSub(fMultDiv2(cr[8], pQmfReal[pReadIdx[8]]), ci[8],
|
|
pQmfImag[pReadIdx[8]]))) +
|
|
fMult(p[0], (fMultSub(fMultDiv2(cr[12], pQmfReal[pReadIdx[12]]), ci[12],
|
|
pQmfImag[pReadIdx[12]]))));
|
|
fft[FFT_IDX_I(2)] =
|
|
(fMult(p[12], (fMultAdd(fMultDiv2(ci[0], pQmfReal[pReadIdx[0]]), cr[0],
|
|
pQmfImag[pReadIdx[0]]))) +
|
|
fMult(p[8], (fMultAdd(fMultDiv2(ci[4], pQmfReal[pReadIdx[4]]), cr[4],
|
|
pQmfImag[pReadIdx[4]]))) +
|
|
fMult(p[4], (fMultAdd(fMultDiv2(ci[8], pQmfReal[pReadIdx[8]]), cr[8],
|
|
pQmfImag[pReadIdx[8]]))) +
|
|
fMult(p[0], (fMultAdd(fMultDiv2(ci[12], pQmfReal[pReadIdx[12]]), cr[12],
|
|
pQmfImag[pReadIdx[12]]))));
|
|
|
|
fft[FFT_IDX_R(3)] =
|
|
(fMult(p[11], (fMultSub(fMultDiv2(cr[1], pQmfReal[pReadIdx[1]]), ci[1],
|
|
pQmfImag[pReadIdx[1]]))) +
|
|
fMult(p[7], (fMultSub(fMultDiv2(cr[5], pQmfReal[pReadIdx[5]]), ci[5],
|
|
pQmfImag[pReadIdx[5]]))) +
|
|
fMult(p[3], (fMultSub(fMultDiv2(cr[9], pQmfReal[pReadIdx[9]]), ci[9],
|
|
pQmfImag[pReadIdx[9]]))));
|
|
fft[FFT_IDX_I(3)] =
|
|
(fMult(p[11], (fMultAdd(fMultDiv2(ci[1], pQmfReal[pReadIdx[1]]), cr[1],
|
|
pQmfImag[pReadIdx[1]]))) +
|
|
fMult(p[7], (fMultAdd(fMultDiv2(ci[5], pQmfReal[pReadIdx[5]]), cr[5],
|
|
pQmfImag[pReadIdx[5]]))) +
|
|
fMult(p[3], (fMultAdd(fMultDiv2(ci[9], pQmfReal[pReadIdx[9]]), cr[9],
|
|
pQmfImag[pReadIdx[9]]))));
|
|
|
|
/* fft modulation */
|
|
/* here: fast manual fft modulation for a fft of length M=4 */
|
|
/* fft_4{x[n]} = x[0]*exp(-i*2*pi/4*m*0) + x[1]*exp(-i*2*pi/4*m*1) +
|
|
x[2]*exp(-i*2*pi/4*m*2) + x[3]*exp(-i*2*pi/4*m*3) */
|
|
|
|
/*
|
|
fft bin m=0:
|
|
X[0, n] = x[0] + x[1] + x[2] + x[3]
|
|
*/
|
|
mHybridReal[0] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] +
|
|
fft[FFT_IDX_R(3)];
|
|
mHybridImag[0] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] +
|
|
fft[FFT_IDX_I(3)];
|
|
|
|
/*
|
|
fft bin m=1:
|
|
X[1, n] = x[0] - i*x[1] - x[2] + i*x[3]
|
|
*/
|
|
mHybridReal[1] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] -
|
|
fft[FFT_IDX_I(3)];
|
|
mHybridImag[1] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] +
|
|
fft[FFT_IDX_R(3)];
|
|
|
|
/*
|
|
fft bin m=2:
|
|
X[2, n] = x[0] - x[1] + x[2] - x[3]
|
|
*/
|
|
mHybridReal[2] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] -
|
|
fft[FFT_IDX_R(3)];
|
|
mHybridImag[2] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] -
|
|
fft[FFT_IDX_I(3)];
|
|
|
|
/*
|
|
fft bin m=3:
|
|
X[3, n] = x[0] + j*x[1] - x[2] - j*x[3]
|
|
*/
|
|
mHybridReal[3] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] +
|
|
fft[FFT_IDX_I(3)];
|
|
mHybridImag[3] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] -
|
|
fft[FFT_IDX_R(3)];
|
|
}
|
|
|
|
static void eightChannelFiltering(const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
const INT *const pReadIdx,
|
|
FIXP_DBL *const mHybridReal,
|
|
FIXP_DBL *const mHybridImag,
|
|
const INT invert) {
|
|
const FIXP_HTP *p = HybFilterCoef8;
|
|
INT k, sc;
|
|
|
|
FIXP_DBL mfft[16 + ALIGNMENT_DEFAULT];
|
|
FIXP_DBL *pfft = (FIXP_DBL *)ALIGN_PTR(mfft);
|
|
|
|
FIXP_DBL accu1, accu2, accu3, accu4;
|
|
|
|
/* pre twiddeling */
|
|
pfft[FFT_IDX_R(0)] =
|
|
pQmfReal[pReadIdx[6]] >>
|
|
(3 + 1); /* fMultDiv2(p[0].v.re, pQmfReal[pReadIdx[6]]); */
|
|
pfft[FFT_IDX_I(0)] =
|
|
pQmfImag[pReadIdx[6]] >>
|
|
(3 + 1); /* fMultDiv2(p[0].v.re, pQmfImag[pReadIdx[6]]); */
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[7]], pQmfImag[pReadIdx[7]],
|
|
p[1]);
|
|
pfft[FFT_IDX_R(1)] = accu1;
|
|
pfft[FFT_IDX_I(1)] = accu2;
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[0]], pQmfImag[pReadIdx[0]],
|
|
p[2]);
|
|
cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[8]], pQmfImag[pReadIdx[8]],
|
|
p[3]);
|
|
pfft[FFT_IDX_R(2)] = accu1 + accu3;
|
|
pfft[FFT_IDX_I(2)] = accu2 + accu4;
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[1]], pQmfImag[pReadIdx[1]],
|
|
p[4]);
|
|
cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[9]], pQmfImag[pReadIdx[9]],
|
|
p[5]);
|
|
pfft[FFT_IDX_R(3)] = accu1 + accu3;
|
|
pfft[FFT_IDX_I(3)] = accu2 + accu4;
|
|
|
|
pfft[FFT_IDX_R(4)] = fMultDiv2(pQmfImag[pReadIdx[10]], p[7].v.im) -
|
|
fMultDiv2(pQmfImag[pReadIdx[2]], p[6].v.im);
|
|
pfft[FFT_IDX_I(4)] = fMultDiv2(pQmfReal[pReadIdx[2]], p[6].v.im) -
|
|
fMultDiv2(pQmfReal[pReadIdx[10]], p[7].v.im);
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[3]], pQmfImag[pReadIdx[3]],
|
|
p[8]);
|
|
cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[11]], pQmfImag[pReadIdx[11]],
|
|
p[9]);
|
|
pfft[FFT_IDX_R(5)] = accu1 + accu3;
|
|
pfft[FFT_IDX_I(5)] = accu2 + accu4;
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[4]], pQmfImag[pReadIdx[4]],
|
|
p[10]);
|
|
cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[12]], pQmfImag[pReadIdx[12]],
|
|
p[11]);
|
|
pfft[FFT_IDX_R(6)] = accu1 + accu3;
|
|
pfft[FFT_IDX_I(6)] = accu2 + accu4;
|
|
|
|
cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[5]], pQmfImag[pReadIdx[5]],
|
|
p[12]);
|
|
pfft[FFT_IDX_R(7)] = accu1;
|
|
pfft[FFT_IDX_I(7)] = accu2;
|
|
|
|
/* fft modulation */
|
|
fft_8(pfft);
|
|
sc = 1 + 2;
|
|
|
|
if (invert) {
|
|
mHybridReal[0] = pfft[FFT_IDX_R(7)] << sc;
|
|
mHybridImag[0] = pfft[FFT_IDX_I(7)] << sc;
|
|
mHybridReal[1] = pfft[FFT_IDX_R(0)] << sc;
|
|
mHybridImag[1] = pfft[FFT_IDX_I(0)] << sc;
|
|
|
|
mHybridReal[2] = pfft[FFT_IDX_R(6)] << sc;
|
|
mHybridImag[2] = pfft[FFT_IDX_I(6)] << sc;
|
|
mHybridReal[3] = pfft[FFT_IDX_R(1)] << sc;
|
|
mHybridImag[3] = pfft[FFT_IDX_I(1)] << sc;
|
|
|
|
mHybridReal[4] = pfft[FFT_IDX_R(2)] << sc;
|
|
mHybridReal[4] += pfft[FFT_IDX_R(5)] << sc;
|
|
mHybridImag[4] = pfft[FFT_IDX_I(2)] << sc;
|
|
mHybridImag[4] += pfft[FFT_IDX_I(5)] << sc;
|
|
|
|
mHybridReal[5] = pfft[FFT_IDX_R(3)] << sc;
|
|
mHybridReal[5] += pfft[FFT_IDX_R(4)] << sc;
|
|
mHybridImag[5] = pfft[FFT_IDX_I(3)] << sc;
|
|
mHybridImag[5] += pfft[FFT_IDX_I(4)] << sc;
|
|
} else {
|
|
for (k = 0; k < 8; k++) {
|
|
mHybridReal[k] = pfft[FFT_IDX_R(k)] << sc;
|
|
mHybridImag[k] = pfft[FFT_IDX_I(k)] << sc;
|
|
}
|
|
}
|
|
}
|
|
|
|
static INT kChannelFiltering(const FIXP_DBL *const pQmfReal,
|
|
const FIXP_DBL *const pQmfImag,
|
|
const INT *const pReadIdx,
|
|
FIXP_DBL *const mHybridReal,
|
|
FIXP_DBL *const mHybridImag,
|
|
const SCHAR hybridConfig) {
|
|
INT err = 0;
|
|
|
|
switch (hybridConfig) {
|
|
case 2:
|
|
case -2:
|
|
dualChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
|
|
mHybridImag, (hybridConfig < 0) ? 1 : 0);
|
|
break;
|
|
case 4:
|
|
case -4:
|
|
fourChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
|
|
mHybridImag, (hybridConfig < 0) ? 1 : 0);
|
|
break;
|
|
case 8:
|
|
case -8:
|
|
eightChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal,
|
|
mHybridImag, (hybridConfig < 0) ? 1 : 0);
|
|
break;
|
|
default:
|
|
err = -1;
|
|
}
|
|
|
|
return err;
|
|
}
|