mirror of
https://github.com/mstorsjo/fdk-aac.git
synced 2024-12-13 08:56:25 +01:00
82383e3212
Test: atest DecoderTestXheAac ; atest DecoderTestAacDrc Change-Id: I916a24c000ef792aa3d5befa02a6b6f673161844
874 lines
32 KiB
C++
874 lines
32 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/**************************** SBR decoder library ******************************
|
|
|
|
Author(s):
|
|
|
|
Description:
|
|
|
|
*******************************************************************************/
|
|
|
|
/*!
|
|
\file
|
|
\brief envelope decoding
|
|
This module provides envelope decoding and error concealment algorithms. The
|
|
main entry point is decodeSbrData().
|
|
|
|
\sa decodeSbrData(),\ref documentationOverview
|
|
*/
|
|
|
|
#include "env_dec.h"
|
|
|
|
#include "env_extr.h"
|
|
#include "transcendent.h"
|
|
|
|
#include "genericStds.h"
|
|
|
|
static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
|
|
static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
|
|
HANDLE_SBR_FRAME_DATA h_data_left,
|
|
HANDLE_SBR_FRAME_DATA h_data_right);
|
|
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
int ampResolution);
|
|
static void deltaToLinearPcmEnvelopeDecoding(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
|
|
static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
|
|
static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
|
|
static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
|
|
|
|
#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
|
|
#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
|
|
|
|
#define DECAY (1 << ENV_EXP_FRACT)
|
|
|
|
#if ENV_EXP_FRACT
|
|
#define DECAY_COUPLING \
|
|
(1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
|
|
#else
|
|
#define DECAY_COUPLING \
|
|
1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
|
|
#endif
|
|
|
|
/*!
|
|
\brief Convert table index
|
|
*/
|
|
static int indexLow2High(int offset, /*!< mapping factor */
|
|
int index, /*!< index to scalefactor band */
|
|
int res) /*!< frequency resolution */
|
|
{
|
|
if (res == 0) {
|
|
if (offset >= 0) {
|
|
if (index < offset)
|
|
return (index);
|
|
else
|
|
return (2 * index - offset);
|
|
} else {
|
|
offset = -offset;
|
|
if (index < offset)
|
|
return (2 * index + index);
|
|
else
|
|
return (2 * index + offset);
|
|
}
|
|
} else
|
|
return (index);
|
|
}
|
|
|
|
/*!
|
|
\brief Update previous envelope value for delta-coding
|
|
|
|
The current envelope values needs to be stored for delta-coding
|
|
in the next frame. The stored envelope is always represented with
|
|
the high frequency resolution. If the current envelope uses the
|
|
low frequency resolution, the energy value will be mapped to the
|
|
corresponding high-res bands.
|
|
*/
|
|
static void mapLowResEnergyVal(
|
|
FIXP_SGL currVal, /*!< current energy value */
|
|
FIXP_SGL *prevData, /*!< pointer to previous data vector */
|
|
int offset, /*!< mapping factor */
|
|
int index, /*!< index to scalefactor band */
|
|
int res) /*!< frequeny resolution */
|
|
{
|
|
if (res == 0) {
|
|
if (offset >= 0) {
|
|
if (index < offset)
|
|
prevData[index] = currVal;
|
|
else {
|
|
prevData[2 * index - offset] = currVal;
|
|
prevData[2 * index + 1 - offset] = currVal;
|
|
}
|
|
} else {
|
|
offset = -offset;
|
|
if (index < offset) {
|
|
prevData[3 * index] = currVal;
|
|
prevData[3 * index + 1] = currVal;
|
|
prevData[3 * index + 2] = currVal;
|
|
} else {
|
|
prevData[2 * index + offset] = currVal;
|
|
prevData[2 * index + 1 + offset] = currVal;
|
|
}
|
|
}
|
|
} else
|
|
prevData[index] = currVal;
|
|
}
|
|
|
|
/*!
|
|
\brief Convert raw envelope and noisefloor data to energy levels
|
|
|
|
This function is being called by sbrDecoder_ParseElement() and provides two
|
|
important algorithms:
|
|
|
|
First the function decodes envelopes and noise floor levels as described in
|
|
requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
|
|
implements concealment algorithms in case there are errors within the sbr
|
|
data. For both operations fractional arithmetic is used. Therefore you might
|
|
encounter different output values on your target system compared to the
|
|
reference implementation.
|
|
*/
|
|
void decodeSbrData(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA
|
|
h_data_left, /*!< pointer to left channel frame data */
|
|
HANDLE_SBR_PREV_FRAME_DATA
|
|
h_prev_data_left, /*!< pointer to left channel previous frame data */
|
|
HANDLE_SBR_FRAME_DATA
|
|
h_data_right, /*!< pointer to right channel frame data */
|
|
HANDLE_SBR_PREV_FRAME_DATA
|
|
h_prev_data_right) /*!< pointer to right channel previous frame data */
|
|
{
|
|
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
|
|
int errLeft;
|
|
|
|
/* Save previous energy values to be able to reuse them later for concealment.
|
|
*/
|
|
FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
|
|
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
|
|
|
|
if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
|
|
decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
|
|
h_prev_data_right);
|
|
} else {
|
|
FDK_ASSERT(h_data_right == NULL);
|
|
}
|
|
decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
|
|
|
|
if (h_data_right != NULL) {
|
|
errLeft = hHeaderData->frameErrorFlag;
|
|
decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
|
|
h_prev_data_left);
|
|
decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
|
|
|
|
if (!errLeft && hHeaderData->frameErrorFlag) {
|
|
/* If an error occurs in the right channel where the left channel seemed
|
|
ok, we apply concealment also on the left channel. This ensures that
|
|
the coupling modes of both channels match and that we have the same
|
|
number of envelopes in coupling mode. However, as the left channel has
|
|
already been processed before, the resulting energy levels are not the
|
|
same as if the left channel had been concealed during the first call of
|
|
decodeEnvelope().
|
|
*/
|
|
/* Restore previous energy values for concealment, because the values have
|
|
been overwritten by the first call of decodeEnvelope(). */
|
|
FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
|
|
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
|
|
/* Do concealment */
|
|
decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
|
|
h_prev_data_right);
|
|
}
|
|
|
|
if (h_data_left->coupling) {
|
|
sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
|
|
}
|
|
}
|
|
|
|
/* Display the data for debugging: */
|
|
}
|
|
|
|
/*!
|
|
\brief Convert from coupled channels to independent L/R data
|
|
*/
|
|
static void sbr_envelope_unmapping(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
|
|
HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
|
|
{
|
|
int i;
|
|
FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
|
|
SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
|
|
|
|
/* 1. Unmap (already dequantized) coupled envelope energies */
|
|
|
|
for (i = 0; i < h_data_left->nScaleFactors; i++) {
|
|
tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
|
|
tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
|
|
|
|
tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
|
|
h_data_right->nChannels) */
|
|
tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
|
|
tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
|
|
|
|
tempL_e -= NRG_EXP_OFFSET;
|
|
|
|
/* Calculate tempRight+1 */
|
|
FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
|
|
&tempRplus1_m, &tempRplus1_e);
|
|
|
|
FDK_divide_MantExp(tempL_m, tempL_e + 1, /* 2 * tempLeft */
|
|
tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
|
|
|
|
if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
|
|
newR_m >>= 1;
|
|
newR_e += 1;
|
|
}
|
|
|
|
newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
|
|
newL_e = tempR_e + newR_e;
|
|
|
|
h_data_right->iEnvelope[i] =
|
|
((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
|
|
(FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
|
|
h_data_left->iEnvelope[i] =
|
|
((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
|
|
(FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
|
|
}
|
|
|
|
/* 2. Dequantize and unmap coupled noise floor levels */
|
|
|
|
for (i = 0; i < hHeaderData->freqBandData.nNfb *
|
|
h_data_left->frameInfo.nNoiseEnvelopes;
|
|
i++) {
|
|
tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
|
|
tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
|
|
12) /*SBR_ENERGY_PAN_OFFSET*/;
|
|
|
|
/* Calculate tempR+1 */
|
|
FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
|
|
FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
|
|
&tempRplus1_m, &tempRplus1_e);
|
|
|
|
/* Calculate 2*tempLeft/(tempR+1) */
|
|
FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /* 2 * tempLeft */
|
|
tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
|
|
|
|
/* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
|
|
newR_m >>= 1;
|
|
newR_e += 1;
|
|
} */
|
|
|
|
/* L = tempR * R */
|
|
newL_m = newR_m;
|
|
newL_e = newR_e + tempR_e;
|
|
h_data_right->sbrNoiseFloorLevel[i] =
|
|
((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
|
|
(FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
|
|
h_data_left->sbrNoiseFloorLevel[i] =
|
|
((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
|
|
(FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Simple alternative to the real SBR concealment
|
|
|
|
If the real frameInfo is not available due to a frame loss, a replacement will
|
|
be constructed with 1 envelope spanning the whole frame (FIX-FIX).
|
|
The delta-coded energies are set to negative values, resulting in a fade-down.
|
|
In case of coupling, the balance-channel will move towards the center.
|
|
*/
|
|
static void leanSbrConcealment(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
|
|
) {
|
|
FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
|
|
FIXP_SGL step; /* speed of fade */
|
|
int i;
|
|
|
|
int currentStartPos =
|
|
fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
|
|
int currentStopPos = hHeaderData->numberTimeSlots;
|
|
|
|
/* Use some settings of the previous frame */
|
|
h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
|
|
h_sbr_data->coupling = h_prev_data->coupling;
|
|
for (i = 0; i < MAX_INVF_BANDS; i++)
|
|
h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
|
|
|
|
/* Generate concealing control data */
|
|
|
|
h_sbr_data->frameInfo.nEnvelopes = 1;
|
|
h_sbr_data->frameInfo.borders[0] = currentStartPos;
|
|
h_sbr_data->frameInfo.borders[1] = currentStopPos;
|
|
h_sbr_data->frameInfo.freqRes[0] = 1;
|
|
h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
|
|
h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
|
|
h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
|
|
h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
|
|
|
|
h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
|
|
|
|
/* Generate fake envelope data */
|
|
|
|
h_sbr_data->domain_vec[0] = 1;
|
|
|
|
if (h_sbr_data->coupling == COUPLING_BAL) {
|
|
target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
|
|
step = (FIXP_SGL)DECAY_COUPLING;
|
|
} else {
|
|
target = FL2FXCONST_SGL(0.0f);
|
|
step = (FIXP_SGL)DECAY;
|
|
}
|
|
if (hHeaderData->bs_info.ampResolution == 0) {
|
|
target <<= 1;
|
|
step <<= 1;
|
|
}
|
|
|
|
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
|
|
if (h_prev_data->sfb_nrg_prev[i] > target)
|
|
h_sbr_data->iEnvelope[i] = -step;
|
|
else
|
|
h_sbr_data->iEnvelope[i] = step;
|
|
}
|
|
|
|
/* Noisefloor levels are always cleared ... */
|
|
|
|
h_sbr_data->domain_vec_noise[0] = 1;
|
|
FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,
|
|
sizeof(h_sbr_data->sbrNoiseFloorLevel));
|
|
|
|
/* ... and so are the sines */
|
|
FDKmemclear(h_sbr_data->addHarmonics,
|
|
sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
|
|
}
|
|
|
|
/*!
|
|
\brief Build reference energies and noise levels from bitstream elements
|
|
*/
|
|
static void decodeEnvelope(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
|
|
HANDLE_SBR_PREV_FRAME_DATA
|
|
h_prev_data, /*!< pointer to data of last frame */
|
|
HANDLE_SBR_PREV_FRAME_DATA
|
|
otherChannel /*!< other channel's last frame data */
|
|
) {
|
|
int i;
|
|
int fFrameError = hHeaderData->frameErrorFlag;
|
|
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
|
|
|
|
if (!fFrameError) {
|
|
/*
|
|
To avoid distortions after bad frames, set the error flag if delta coding
|
|
in time occurs. However, SBR can take a little longer to come up again.
|
|
*/
|
|
if (h_prev_data->frameErrorFlag) {
|
|
if (h_sbr_data->domain_vec[0] != 0) {
|
|
fFrameError = 1;
|
|
}
|
|
} else {
|
|
/* Check that the previous stop position and the current start position
|
|
match. (Could be done in checkFrameInfo(), but the previous frame data
|
|
is not available there) */
|
|
if (h_sbr_data->frameInfo.borders[0] !=
|
|
h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
|
|
/* Both the previous as well as the current frame are flagged to be ok,
|
|
* but they do not match! */
|
|
if (h_sbr_data->domain_vec[0] == 1) {
|
|
/* Prefer concealment over delta-time coding between the mismatching
|
|
* frames */
|
|
fFrameError = 1;
|
|
} else {
|
|
/* Close the gap in time by triggering timeCompensateFirstEnvelope()
|
|
*/
|
|
fFrameError = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fFrameError) /* Error is detected */
|
|
{
|
|
leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
|
|
|
|
/* decode the envelope data to linear PCM */
|
|
deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
|
|
} else /*Do a temporary dummy decoding and check that the envelope values are
|
|
within limits */
|
|
{
|
|
if (h_prev_data->frameErrorFlag) {
|
|
timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
|
|
if (h_sbr_data->coupling != h_prev_data->coupling) {
|
|
/*
|
|
Coupling mode has changed during concealment.
|
|
The stored energy levels need to be converted.
|
|
*/
|
|
for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
|
|
/* Former Level-Channel will be used for both channels */
|
|
if (h_prev_data->coupling == COUPLING_BAL) {
|
|
h_prev_data->sfb_nrg_prev[i] =
|
|
(otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]
|
|
: (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
|
|
}
|
|
/* Former L/R will be combined as the new Level-Channel */
|
|
else if (h_sbr_data->coupling == COUPLING_LEVEL &&
|
|
otherChannel != NULL) {
|
|
h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
|
|
otherChannel->sfb_nrg_prev[i]) >>
|
|
1;
|
|
} else if (h_sbr_data->coupling == COUPLING_BAL) {
|
|
h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
|
|
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
|
|
|
|
deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
|
|
|
|
fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
|
|
|
|
if (fFrameError) {
|
|
hHeaderData->frameErrorFlag = 1;
|
|
FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
|
|
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
|
|
decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
|
|
return;
|
|
}
|
|
}
|
|
|
|
requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
|
|
|
|
hHeaderData->frameErrorFlag = fFrameError;
|
|
}
|
|
|
|
/*!
|
|
\brief Verify that envelope energies are within the allowed range
|
|
\return 0 if all is fine, 1 if an envelope value was too high
|
|
*/
|
|
static int checkEnvelopeData(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
|
|
) {
|
|
FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
|
|
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
|
|
int i = 0, errorFlag = 0;
|
|
FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
|
|
? SBR_MAX_ENERGY
|
|
: (SBR_MAX_ENERGY << 1);
|
|
|
|
/*
|
|
Range check for current energies
|
|
*/
|
|
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
|
|
if (iEnvelope[i] > sbr_max_energy) {
|
|
errorFlag = 1;
|
|
}
|
|
if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
|
|
errorFlag = 1;
|
|
/* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
|
|
}
|
|
}
|
|
|
|
/*
|
|
Range check for previous energies
|
|
*/
|
|
for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
|
|
sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
|
|
sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
|
|
}
|
|
|
|
return (errorFlag);
|
|
}
|
|
|
|
/*!
|
|
\brief Verify that the noise levels are within the allowed range
|
|
|
|
The function is equivalent to checkEnvelopeData().
|
|
When the noise-levels are being decoded, it is already too late for
|
|
concealment. Therefore the noise levels are simply limited here.
|
|
*/
|
|
static void limitNoiseLevels(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
|
|
{
|
|
int i;
|
|
int nNfb = hHeaderData->freqBandData.nNfb;
|
|
|
|
/*
|
|
Set range limits. The exact values depend on the coupling mode.
|
|
However this limitation is primarily intended to avoid unlimited
|
|
accumulation of the delta-coded noise levels.
|
|
*/
|
|
#define lowerLimit \
|
|
((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
|
|
#define upperLimit \
|
|
((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
|
|
|
|
/*
|
|
Range check for current noise levels
|
|
*/
|
|
for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
|
|
h_sbr_data->sbrNoiseFloorLevel[i] =
|
|
fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
|
|
h_sbr_data->sbrNoiseFloorLevel[i] =
|
|
fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Compensate for the wrong timing that might occur after a frame error.
|
|
*/
|
|
static void timeCompensateFirstEnvelope(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
|
|
HANDLE_SBR_PREV_FRAME_DATA
|
|
h_prev_data) /*!< pointer to data of last frame */
|
|
{
|
|
int i, nScalefactors;
|
|
FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
|
|
UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
|
|
int estimatedStartPos =
|
|
fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
|
|
int refLen, newLen, shift;
|
|
FIXP_SGL deltaExp;
|
|
|
|
/* Original length of first envelope according to bitstream */
|
|
refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
|
|
/* Corrected length of first envelope (concealing can make the first envelope
|
|
* longer) */
|
|
newLen = pFrameInfo->borders[1] - estimatedStartPos;
|
|
|
|
if (newLen <= 0) {
|
|
/* An envelope length of <= 0 would not work, so we don't use it.
|
|
May occur if the previous frame was flagged bad due to a mismatch
|
|
of the old and new frame infos. */
|
|
newLen = refLen;
|
|
estimatedStartPos = pFrameInfo->borders[0];
|
|
}
|
|
|
|
deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
|
|
|
|
/* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
|
|
shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
|
|
h_sbr_data->ampResolutionCurrentFrame - 3);
|
|
deltaExp = deltaExp >> shift;
|
|
pFrameInfo->borders[0] = estimatedStartPos;
|
|
pFrameInfo->bordersNoise[0] = estimatedStartPos;
|
|
|
|
if (h_sbr_data->coupling != COUPLING_BAL) {
|
|
nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
|
|
|
|
for (i = 0; i < nScalefactors; i++)
|
|
h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Convert each envelope value from logarithmic to linear domain
|
|
|
|
Energy levels are transmitted in powers of 2, i.e. only the exponent
|
|
is extracted from the bitstream.
|
|
Therefore, normally only integer exponents can occur. However during
|
|
fading (in case of a corrupt bitstream), a fractional part can also
|
|
occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
|
|
compared to an integer representation so that numbers smaller than 1
|
|
can be represented.
|
|
|
|
This function calculates a mantissa corresponding to the fractional
|
|
part of the exponent for each reference energy. The array iEnvelope
|
|
is converted in place to save memory. Input and output data must
|
|
be interpreted differently, as shown in the below figure:
|
|
|
|
\image html EnvelopeData.png
|
|
|
|
The data is then used in calculateSbrEnvelope().
|
|
*/
|
|
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
|
|
int ampResolution) {
|
|
int i;
|
|
FIXP_SGL mantissa;
|
|
int ampShift = 1 - ampResolution;
|
|
int exponent;
|
|
|
|
/* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
|
|
the initialization of this array has to be adapted!
|
|
*/
|
|
#if ENV_EXP_FRACT
|
|
static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
|
|
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
|
|
};
|
|
|
|
int bit, mask;
|
|
#endif
|
|
|
|
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
|
|
exponent = (LONG)h_sbr_data->iEnvelope[i];
|
|
|
|
#if ENV_EXP_FRACT
|
|
|
|
exponent = exponent >> ampShift;
|
|
mantissa = 0.5f;
|
|
|
|
/* Amplify mantissa according to the fractional part of the
|
|
exponent (result will be between 0.500000 and 0.999999)
|
|
*/
|
|
mask = 1; /* begin with lowest bit of exponent */
|
|
|
|
for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
|
|
if (exponent & mask) {
|
|
/* The current bit of the exponent is set,
|
|
multiply mantissa with the corresponding factor: */
|
|
mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
|
|
}
|
|
/* Advance to next bit */
|
|
mask = mask << 1;
|
|
}
|
|
|
|
/* Make integer part of exponent right aligned */
|
|
exponent = exponent >> ENV_EXP_FRACT;
|
|
|
|
#else
|
|
/* In case of the high amplitude resolution, 1 bit of the exponent gets lost
|
|
by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
|
|
instead of 0.5 if that bit is 1. */
|
|
mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
|
|
: FL2FXCONST_SGL(0.5f);
|
|
exponent = exponent >> ampShift;
|
|
#endif
|
|
|
|
/*
|
|
Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
|
|
1). Multiply by L=nChannels=64 by increasing exponent by another 6.
|
|
=> Increase exponent by 7
|
|
*/
|
|
exponent += 7 + NRG_EXP_OFFSET;
|
|
|
|
/* Combine mantissa and exponent and write back the result */
|
|
h_sbr_data->iEnvelope[i] =
|
|
((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
|
|
(FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Build new reference energies from old ones and delta coded data
|
|
*/
|
|
static void deltaToLinearPcmEnvelopeDecoding(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
|
|
{
|
|
int i, domain, no_of_bands, band, freqRes;
|
|
|
|
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
|
|
FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
|
|
|
|
int offset =
|
|
2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
|
|
|
|
for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
|
|
domain = h_sbr_data->domain_vec[i];
|
|
freqRes = h_sbr_data->frameInfo.freqRes[i];
|
|
|
|
FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
|
|
|
|
no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
|
|
|
|
FDK_ASSERT(no_of_bands < (64));
|
|
|
|
if (domain == 0) {
|
|
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
|
|
ptr_nrg++;
|
|
for (band = 1; band < no_of_bands; band++) {
|
|
*ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
|
|
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
|
|
ptr_nrg++;
|
|
}
|
|
} else {
|
|
for (band = 0; band < no_of_bands; band++) {
|
|
*ptr_nrg =
|
|
*ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
|
|
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
|
|
ptr_nrg++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Build new noise levels from old ones and delta coded data
|
|
*/
|
|
static void decodeNoiseFloorlevels(
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
|
|
HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
|
|
{
|
|
int i;
|
|
int nNfb = hHeaderData->freqBandData.nNfb;
|
|
int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
|
|
|
|
/* Decode first noise envelope */
|
|
|
|
if (h_sbr_data->domain_vec_noise[0] == 0) {
|
|
FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
|
|
for (i = 1; i < nNfb; i++) {
|
|
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
|
|
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nNfb; i++) {
|
|
h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
|
|
}
|
|
}
|
|
|
|
/* If present, decode the second noise envelope
|
|
Note: nNoiseFloorEnvelopes can only be 1 or 2 */
|
|
|
|
if (nNoiseFloorEnvelopes > 1) {
|
|
if (h_sbr_data->domain_vec_noise[1] == 0) {
|
|
FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
|
|
for (i = nNfb + 1; i < 2 * nNfb; i++) {
|
|
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
|
|
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nNfb; i++) {
|
|
h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
|
|
h_sbr_data->sbrNoiseFloorLevel[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
limitNoiseLevels(hHeaderData, h_sbr_data);
|
|
|
|
/* Update prevNoiseLevel with the last noise envelope */
|
|
for (i = 0; i < nNfb; i++)
|
|
h_prev_data->prevNoiseLevel[i] =
|
|
h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
|
|
|
|
/* Requantize the noise floor levels in COUPLING_OFF-mode */
|
|
if (!h_sbr_data->coupling) {
|
|
int nf_e;
|
|
|
|
for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
|
|
nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
|
|
/* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
|
|
|
|
h_sbr_data->sbrNoiseFloorLevel[i] =
|
|
(FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
|
|
(nf_e & MASK_E)); /* exponent */
|
|
}
|
|
}
|
|
}
|