mirror of https://github.com/mstorsjo/fdk-aac.git
362 lines
14 KiB
C++
362 lines
14 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/**************************** AAC encoder library ******************************
|
|
|
|
Author(s): M. Werner
|
|
|
|
Description: Band/Line energy calculations
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "band_nrg.h"
|
|
|
|
/*****************************************************************************
|
|
functionname: FDKaacEnc_CalcSfbMaxScaleSpec
|
|
description:
|
|
input:
|
|
output:
|
|
*****************************************************************************/
|
|
void FDKaacEnc_CalcSfbMaxScaleSpec(const FIXP_DBL *RESTRICT mdctSpectrum,
|
|
const INT *RESTRICT bandOffset,
|
|
INT *RESTRICT sfbMaxScaleSpec,
|
|
const INT numBands) {
|
|
INT i, j;
|
|
FIXP_DBL maxSpc, tmp;
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
maxSpc = (FIXP_DBL)0;
|
|
|
|
DWORD_ALIGNED(mdctSpectrum);
|
|
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
tmp = fixp_abs(mdctSpectrum[j]);
|
|
maxSpc = fixMax(maxSpc, tmp);
|
|
}
|
|
j = CntLeadingZeros(maxSpc) - 1;
|
|
sfbMaxScaleSpec[i] = fixMin((DFRACT_BITS - 2), j);
|
|
/* CountLeadingBits() is not necessary here since test value is always > 0
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
functionname: FDKaacEnc_CheckBandEnergyOptim
|
|
description:
|
|
input:
|
|
output:
|
|
*****************************************************************************/
|
|
FIXP_DBL
|
|
FDKaacEnc_CheckBandEnergyOptim(const FIXP_DBL *const RESTRICT mdctSpectrum,
|
|
const INT *const RESTRICT sfbMaxScaleSpec,
|
|
const INT *const RESTRICT bandOffset,
|
|
const INT numBands,
|
|
FIXP_DBL *RESTRICT bandEnergy,
|
|
FIXP_DBL *RESTRICT bandEnergyLdData,
|
|
const INT minSpecShift) {
|
|
INT i, j, scale, nr = 0;
|
|
FIXP_DBL maxNrgLd = FL2FXCONST_DBL(-1.0f);
|
|
FIXP_DBL maxNrg = 0;
|
|
FIXP_DBL spec;
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
scale = fixMax(0, sfbMaxScaleSpec[i] - 4);
|
|
FIXP_DBL tmp = 0;
|
|
|
|
DWORD_ALIGNED(mdctSpectrum);
|
|
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
spec = mdctSpectrum[j] << scale;
|
|
tmp = fPow2AddDiv2(tmp, spec);
|
|
}
|
|
bandEnergy[i] = tmp << 1;
|
|
|
|
/* calculate ld of bandNrg, subtract scaling */
|
|
bandEnergyLdData[i] = CalcLdData(bandEnergy[i]);
|
|
if (bandEnergyLdData[i] != FL2FXCONST_DBL(-1.0f)) {
|
|
bandEnergyLdData[i] -= scale * FL2FXCONST_DBL(2.0 / 64);
|
|
}
|
|
/* find index of maxNrg */
|
|
if (bandEnergyLdData[i] > maxNrgLd) {
|
|
maxNrgLd = bandEnergyLdData[i];
|
|
nr = i;
|
|
}
|
|
}
|
|
|
|
/* return unscaled maxNrg*/
|
|
scale = fixMax(0, sfbMaxScaleSpec[nr] - 4);
|
|
scale = fixMax(2 * (minSpecShift - scale), -(DFRACT_BITS - 1));
|
|
|
|
maxNrg = scaleValue(bandEnergy[nr], scale);
|
|
|
|
return maxNrg;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
functionname: FDKaacEnc_CalcBandEnergyOptimLong
|
|
description:
|
|
input:
|
|
output:
|
|
*****************************************************************************/
|
|
INT FDKaacEnc_CalcBandEnergyOptimLong(const FIXP_DBL *RESTRICT mdctSpectrum,
|
|
INT *RESTRICT sfbMaxScaleSpec,
|
|
const INT *RESTRICT bandOffset,
|
|
const INT numBands,
|
|
FIXP_DBL *RESTRICT bandEnergy,
|
|
FIXP_DBL *RESTRICT bandEnergyLdData) {
|
|
INT i, j, shiftBits = 0;
|
|
FIXP_DBL maxNrgLd = FL2FXCONST_DBL(0.0f);
|
|
|
|
FIXP_DBL spec;
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
INT leadingBits = sfbMaxScaleSpec[i] -
|
|
4; /* max sfbWidth = 96 ; 2^7=128 => 7/2 = 4 (spc*spc) */
|
|
FIXP_DBL tmp = FL2FXCONST_DBL(0.0);
|
|
/* don't use scaleValue() here, it increases workload quite sufficiently...
|
|
*/
|
|
if (leadingBits >= 0) {
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
spec = mdctSpectrum[j] << leadingBits;
|
|
tmp = fPow2AddDiv2(tmp, spec);
|
|
}
|
|
} else {
|
|
INT shift = -leadingBits;
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
spec = mdctSpectrum[j] >> shift;
|
|
tmp = fPow2AddDiv2(tmp, spec);
|
|
}
|
|
}
|
|
bandEnergy[i] = tmp << 1;
|
|
}
|
|
|
|
/* calculate ld of bandNrg, subtract scaling */
|
|
LdDataVector(bandEnergy, bandEnergyLdData, numBands);
|
|
for (i = numBands; i-- != 0;) {
|
|
FIXP_DBL scaleDiff = (sfbMaxScaleSpec[i] - 4) * FL2FXCONST_DBL(2.0 / 64);
|
|
|
|
bandEnergyLdData[i] = (bandEnergyLdData[i] >=
|
|
((FL2FXCONST_DBL(-1.f) >> 1) + (scaleDiff >> 1)))
|
|
? bandEnergyLdData[i] - scaleDiff
|
|
: FL2FXCONST_DBL(-1.f);
|
|
/* find maxNrgLd */
|
|
maxNrgLd = fixMax(maxNrgLd, bandEnergyLdData[i]);
|
|
}
|
|
|
|
if (maxNrgLd <= (FIXP_DBL)0) {
|
|
for (i = numBands; i-- != 0;) {
|
|
INT scale = fixMin((sfbMaxScaleSpec[i] - 4) << 1, (DFRACT_BITS - 1));
|
|
bandEnergy[i] = scaleValue(bandEnergy[i], -scale);
|
|
}
|
|
return 0;
|
|
} else { /* scale down NRGs */
|
|
while (maxNrgLd > FL2FXCONST_DBL(0.0f)) {
|
|
maxNrgLd -= FL2FXCONST_DBL(2.0 / 64);
|
|
shiftBits++;
|
|
}
|
|
for (i = numBands; i-- != 0;) {
|
|
INT scale = fixMin(((sfbMaxScaleSpec[i] - 4) + shiftBits) << 1,
|
|
(DFRACT_BITS - 1));
|
|
bandEnergyLdData[i] -= shiftBits * FL2FXCONST_DBL(2.0 / 64);
|
|
bandEnergy[i] = scaleValue(bandEnergy[i], -scale);
|
|
}
|
|
return shiftBits;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
functionname: FDKaacEnc_CalcBandEnergyOptimShort
|
|
description:
|
|
input:
|
|
output:
|
|
*****************************************************************************/
|
|
void FDKaacEnc_CalcBandEnergyOptimShort(const FIXP_DBL *RESTRICT mdctSpectrum,
|
|
INT *RESTRICT sfbMaxScaleSpec,
|
|
const INT *RESTRICT bandOffset,
|
|
const INT numBands,
|
|
FIXP_DBL *RESTRICT bandEnergy) {
|
|
INT i, j;
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
int leadingBits = sfbMaxScaleSpec[i] -
|
|
3; /* max sfbWidth = 36 ; 2^6=64 => 6/2 = 3 (spc*spc) */
|
|
FIXP_DBL tmp = FL2FXCONST_DBL(0.0);
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
FIXP_DBL spec = scaleValue(mdctSpectrum[j], leadingBits);
|
|
tmp = fPow2AddDiv2(tmp, spec);
|
|
}
|
|
bandEnergy[i] = tmp;
|
|
}
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
INT scale = (2 * (sfbMaxScaleSpec[i] - 3)) -
|
|
1; /* max sfbWidth = 36 ; 2^6=64 => 6/2 = 3 (spc*spc) */
|
|
scale = fixMax(fixMin(scale, (DFRACT_BITS - 1)), -(DFRACT_BITS - 1));
|
|
bandEnergy[i] = scaleValueSaturate(bandEnergy[i], -scale);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
functionname: FDKaacEnc_CalcBandNrgMSOpt
|
|
description:
|
|
input:
|
|
output:
|
|
*****************************************************************************/
|
|
void FDKaacEnc_CalcBandNrgMSOpt(
|
|
const FIXP_DBL *RESTRICT mdctSpectrumLeft,
|
|
const FIXP_DBL *RESTRICT mdctSpectrumRight,
|
|
INT *RESTRICT sfbMaxScaleSpecLeft, INT *RESTRICT sfbMaxScaleSpecRight,
|
|
const INT *RESTRICT bandOffset, const INT numBands,
|
|
FIXP_DBL *RESTRICT bandEnergyMid, FIXP_DBL *RESTRICT bandEnergySide,
|
|
INT calcLdData, FIXP_DBL *RESTRICT bandEnergyMidLdData,
|
|
FIXP_DBL *RESTRICT bandEnergySideLdData) {
|
|
INT i, j, minScale;
|
|
FIXP_DBL NrgMid, NrgSide, specm, specs;
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
NrgMid = NrgSide = FL2FXCONST_DBL(0.0);
|
|
minScale = fixMin(sfbMaxScaleSpecLeft[i], sfbMaxScaleSpecRight[i]) - 4;
|
|
minScale = fixMax(0, minScale);
|
|
|
|
if (minScale > 0) {
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
FIXP_DBL specL = mdctSpectrumLeft[j] << (minScale - 1);
|
|
FIXP_DBL specR = mdctSpectrumRight[j] << (minScale - 1);
|
|
specm = specL + specR;
|
|
specs = specL - specR;
|
|
NrgMid = fPow2AddDiv2(NrgMid, specm);
|
|
NrgSide = fPow2AddDiv2(NrgSide, specs);
|
|
}
|
|
} else {
|
|
for (j = bandOffset[i]; j < bandOffset[i + 1]; j++) {
|
|
FIXP_DBL specL = mdctSpectrumLeft[j] >> 1;
|
|
FIXP_DBL specR = mdctSpectrumRight[j] >> 1;
|
|
specm = specL + specR;
|
|
specs = specL - specR;
|
|
NrgMid = fPow2AddDiv2(NrgMid, specm);
|
|
NrgSide = fPow2AddDiv2(NrgSide, specs);
|
|
}
|
|
}
|
|
bandEnergyMid[i] = fMin(NrgMid, (FIXP_DBL)MAXVAL_DBL >> 1) << 1;
|
|
bandEnergySide[i] = fMin(NrgSide, (FIXP_DBL)MAXVAL_DBL >> 1) << 1;
|
|
}
|
|
|
|
if (calcLdData) {
|
|
LdDataVector(bandEnergyMid, bandEnergyMidLdData, numBands);
|
|
LdDataVector(bandEnergySide, bandEnergySideLdData, numBands);
|
|
}
|
|
|
|
for (i = 0; i < numBands; i++) {
|
|
minScale = fixMin(sfbMaxScaleSpecLeft[i], sfbMaxScaleSpecRight[i]);
|
|
INT scale = fixMax(0, 2 * (minScale - 4));
|
|
|
|
if (calcLdData) {
|
|
/* using the minimal scaling of left and right channel can cause very
|
|
small energies; check ldNrg before subtract scaling multiplication:
|
|
fract*INT we don't need fMult */
|
|
|
|
int minus = scale * FL2FXCONST_DBL(1.0 / 64);
|
|
|
|
if (bandEnergyMidLdData[i] != FL2FXCONST_DBL(-1.0f))
|
|
bandEnergyMidLdData[i] -= minus;
|
|
|
|
if (bandEnergySideLdData[i] != FL2FXCONST_DBL(-1.0f))
|
|
bandEnergySideLdData[i] -= minus;
|
|
}
|
|
scale = fixMin(scale, (DFRACT_BITS - 1));
|
|
bandEnergyMid[i] >>= scale;
|
|
bandEnergySide[i] >>= scale;
|
|
}
|
|
}
|