mirror of https://github.com/mstorsjo/fdk-aac.git
496 lines
16 KiB
C
496 lines
16 KiB
C
|
|
/* -----------------------------------------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
|
|
All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
|
|
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
|
|
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
|
|
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
|
|
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
|
|
of the MPEG specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
|
|
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
|
|
individually for the purpose of encoding or decoding bit streams in products that are compliant with
|
|
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
|
|
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
|
|
software may already be covered under those patent licenses when it is used for those licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
|
|
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
|
|
applications information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted without
|
|
payment of copyright license fees provided that you satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
|
|
your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation and/or other materials
|
|
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
|
|
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
|
|
prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
|
|
software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
|
|
and the date of any change. For modified versions of the FDK AAC Codec, the term
|
|
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
|
|
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
|
|
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
|
|
respect to this software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
|
|
by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
|
|
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
|
|
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
|
|
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
|
|
or business interruption, however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of this software, even if
|
|
advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------------------------------------- */
|
|
|
|
/*************************** Fraunhofer IIS FDK Tools **********************
|
|
|
|
Author(s): M. Gayer
|
|
Description: Fixed point specific mathematical functions
|
|
|
|
******************************************************************************/
|
|
|
|
#ifndef __fixpoint_math_H
|
|
#define __fixpoint_math_H
|
|
|
|
|
|
#include "common_fix.h"
|
|
|
|
#if !defined(FUNCTION_fIsLessThan)
|
|
/**
|
|
* \brief Compares two fixpoint values incl. scaling.
|
|
* \param a_m mantissa of the first input value.
|
|
* \param a_e exponent of the first input value.
|
|
* \param b_m mantissa of the second input value.
|
|
* \param b_e exponent of the second input value.
|
|
* \return non-zero if (a_m*2^a_e) < (b_m*2^b_e), 0 otherwise
|
|
*/
|
|
FDK_INLINE INT fIsLessThan(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e)
|
|
{
|
|
if (a_e > b_e) {
|
|
return (b_m >> fMin(a_e-b_e, DFRACT_BITS-1) > a_m);
|
|
} else {
|
|
return (a_m >> fMin(b_e-a_e, DFRACT_BITS-1) < b_m);
|
|
}
|
|
}
|
|
|
|
FDK_INLINE INT fIsLessThan(FIXP_SGL a_m, INT a_e, FIXP_SGL b_m, INT b_e)
|
|
{
|
|
if (a_e > b_e) {
|
|
return (b_m >> fMin(a_e-b_e, FRACT_BITS-1) > a_m);
|
|
} else {
|
|
return (a_m >> fMin(b_e-a_e, FRACT_BITS-1) < b_m);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
#define LD_DATA_SCALING (64.0f)
|
|
#define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */
|
|
|
|
/**
|
|
* \brief deprecated. Use fLog2() instead.
|
|
*/
|
|
FIXP_DBL CalcLdData(FIXP_DBL op);
|
|
|
|
void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number);
|
|
|
|
FIXP_DBL CalcInvLdData(FIXP_DBL op);
|
|
|
|
|
|
void InitLdInt();
|
|
FIXP_DBL CalcLdInt(INT i);
|
|
|
|
extern const USHORT sqrt_tab[49];
|
|
|
|
inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x)
|
|
{
|
|
UINT y = (INT)x;
|
|
UCHAR is_zero=(y==0);
|
|
INT zeros=fixnormz_D(y) & 0x1e;
|
|
y<<=zeros;
|
|
UINT idx=(y>>26)-16;
|
|
USHORT frac=(y>>10)&0xffff;
|
|
USHORT nfrac=0xffff^frac;
|
|
UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
|
|
t=t>>(zeros>>1);
|
|
return(is_zero ? 0 : t);
|
|
}
|
|
|
|
inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e)
|
|
{
|
|
UINT y = (INT)x;
|
|
INT e;
|
|
|
|
if (x == (FIXP_DBL)0) {
|
|
return x;
|
|
}
|
|
|
|
/* Normalize */
|
|
e=fixnormz_D(y);
|
|
y<<=e;
|
|
e = *x_e - e + 2;
|
|
|
|
/* Correct odd exponent. */
|
|
if (e & 1) {
|
|
y >>= 1;
|
|
e ++;
|
|
}
|
|
/* Get square root */
|
|
UINT idx=(y>>26)-16;
|
|
USHORT frac=(y>>10)&0xffff;
|
|
USHORT nfrac=0xffff^frac;
|
|
UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1];
|
|
|
|
/* Write back exponent */
|
|
*x_e = e >> 1;
|
|
return (FIXP_DBL)(LONG)(t>>1);
|
|
}
|
|
|
|
|
|
|
|
FIXP_DBL sqrtFixp(FIXP_DBL op);
|
|
|
|
void InitInvSqrtTab();
|
|
|
|
FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift);
|
|
|
|
/*****************************************************************************
|
|
|
|
functionname: invFixp
|
|
description: delivers 1/(op)
|
|
|
|
*****************************************************************************/
|
|
inline FIXP_DBL invFixp(FIXP_DBL op)
|
|
{
|
|
INT tmp_exp ;
|
|
FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ;
|
|
FDK_ASSERT((31-(2*tmp_exp+1))>=0) ;
|
|
return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ;
|
|
}
|
|
|
|
|
|
|
|
#if defined(__mips__) && (__GNUC__==2)
|
|
|
|
#define FUNCTION_schur_div
|
|
inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
|
|
{
|
|
INT result, tmp ;
|
|
__asm__ ("srl %1, %2, 15\n"
|
|
"div %3, %1\n" : "=lo" (result)
|
|
: "%d" (tmp), "d" (denum) , "d" (num)
|
|
: "hi" ) ;
|
|
return result<<16 ;
|
|
}
|
|
|
|
/*###########################################################################################*/
|
|
#elif defined(__mips__) && (__GNUC__==3)
|
|
|
|
#define FUNCTION_schur_div
|
|
inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count)
|
|
{
|
|
INT result, tmp;
|
|
|
|
__asm__ ("srl %[tmp], %[denum], 15\n"
|
|
"div %[result], %[num], %[tmp]\n"
|
|
: [tmp] "+r" (tmp), [result]"=r"(result)
|
|
: [denum]"r"(denum), [num]"r"(num)
|
|
: "hi", "lo");
|
|
return result << (DFRACT_BITS-16);
|
|
}
|
|
|
|
/*###########################################################################################*/
|
|
#elif defined(SIMULATE_MIPS_DIV)
|
|
|
|
#define FUNCTION_schur_div
|
|
inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count)
|
|
{
|
|
FDK_ASSERT (count<=DFRACT_BITS-1);
|
|
FDK_ASSERT (num>=(FIXP_DBL)0);
|
|
FDK_ASSERT (denum>(FIXP_DBL)0);
|
|
FDK_ASSERT (num <= denum);
|
|
|
|
INT tmp = denum >> (count-1);
|
|
INT result = 0;
|
|
|
|
while (num > tmp)
|
|
{
|
|
num -= tmp;
|
|
result++;
|
|
}
|
|
|
|
return result << (DFRACT_BITS-count);
|
|
}
|
|
|
|
/*###########################################################################################*/
|
|
#endif /* target architecture selector */
|
|
|
|
#if !defined(FUNCTION_schur_div)
|
|
/**
|
|
* \brief Divide two FIXP_DBL values with given precision.
|
|
* \param num dividend
|
|
* \param denum divisor
|
|
* \param count amount of significant bits of the result (starting to the MSB)
|
|
* \return num/divisor
|
|
*/
|
|
FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count);
|
|
#endif
|
|
|
|
|
|
|
|
FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1,
|
|
const FIXP_SGL op2);
|
|
|
|
/**
|
|
* \brief multiply two values with normalization, thus max precision.
|
|
* Author: Robert Weidner
|
|
*
|
|
* \param f1 first factor
|
|
* \param f2 secod factor
|
|
* \param result_e pointer to an INT where the exponent of the result is stored into
|
|
* \return mantissa of the product f1*f2
|
|
*/
|
|
FIXP_DBL fMultNorm(
|
|
FIXP_DBL f1,
|
|
FIXP_DBL f2,
|
|
INT *result_e
|
|
);
|
|
|
|
inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2)
|
|
{
|
|
FIXP_DBL m;
|
|
INT e;
|
|
|
|
m = fMultNorm(f1, f2, &e);
|
|
|
|
m = scaleValueSaturate(m, e);
|
|
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
* \brief Divide 2 FIXP_DBL values with normalization of input values.
|
|
* \param num numerator
|
|
* \param denum denomintator
|
|
* \return num/denum with exponent = 0
|
|
*/
|
|
FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e);
|
|
|
|
/**
|
|
* \brief Divide 2 FIXP_DBL values with normalization of input values.
|
|
* \param num numerator
|
|
* \param denum denomintator
|
|
* \param result_e pointer to an INT where the exponent of the result is stored into
|
|
* \return num/denum with exponent = *result_e
|
|
*/
|
|
FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom);
|
|
|
|
/**
|
|
* \brief Divide 2 FIXP_DBL values with normalization of input values.
|
|
* \param num numerator
|
|
* \param denum denomintator
|
|
* \return num/denum with exponent = 0
|
|
*/
|
|
FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e);
|
|
|
|
/**
|
|
* \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead.
|
|
* \param arg mantissa of the argument
|
|
* \param arg_e exponent of the argument
|
|
* \param result_e pointer to an INT to store the exponent of the result
|
|
* \return the mantissa of the result.
|
|
* \param
|
|
*/
|
|
FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e);
|
|
|
|
/**
|
|
* \brief return 2 ^ (exp * 2^exp_e)
|
|
* \param exp_m mantissa of the exponent to 2.0f
|
|
* \param exp_e exponent of the exponent to 2.0f
|
|
* \param result_e pointer to a INT where the exponent of the result will be stored into
|
|
* \return mantissa of the result
|
|
*/
|
|
FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e);
|
|
|
|
/**
|
|
* \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero.
|
|
* \param exp_m mantissa of the exponent to 2.0f
|
|
* \param exp_e exponent of the exponent to 2.0f
|
|
* \return mantissa of the result
|
|
*/
|
|
FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e);
|
|
|
|
/**
|
|
* \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
|
|
* the need to compute log2() of constant values (when x is a constant).
|
|
* \param ldx_m mantissa of log2() of x.
|
|
* \param ldx_e exponent of log2() of x.
|
|
* \param exp_m mantissa of the exponent to 2.0f
|
|
* \param exp_e exponent of the exponent to 2.0f
|
|
* \param result_e pointer to a INT where the exponent of the result will be stored into
|
|
* \return mantissa of the result
|
|
*/
|
|
FIXP_DBL fLdPow(
|
|
FIXP_DBL baseLd_m,
|
|
INT baseLd_e,
|
|
FIXP_DBL exp_m, INT exp_e,
|
|
INT *result_e
|
|
);
|
|
|
|
/**
|
|
* \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves
|
|
* the need to compute log2() of constant values (when x is a constant). This version
|
|
* does not return an exponent, which is implicitly 0.
|
|
* \param ldx_m mantissa of log2() of x.
|
|
* \param ldx_e exponent of log2() of x.
|
|
* \param exp_m mantissa of the exponent to 2.0f
|
|
* \param exp_e exponent of the exponent to 2.0f
|
|
* \return mantissa of the result
|
|
*/
|
|
FIXP_DBL fLdPow(
|
|
FIXP_DBL baseLd_m, INT baseLd_e,
|
|
FIXP_DBL exp_m, INT exp_e
|
|
);
|
|
|
|
/**
|
|
* \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible.
|
|
* \param base_m mantissa of the base.
|
|
* \param base_e exponent of the base.
|
|
* \param exp_m mantissa of power to be calculated of the base.
|
|
* \param exp_e exponent of power to be calculated of the base.
|
|
* \param result_e pointer to a INT where the exponent of the result will be stored into.
|
|
* \return mantissa of the result.
|
|
*/
|
|
FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e);
|
|
|
|
/**
|
|
* \brief return (base * 2^base_e) ^ N
|
|
* \param base mantissa of the base
|
|
* \param base_e exponent of the base
|
|
* \param power to be calculated of the base
|
|
* \param result_e pointer to a INT where the exponent of the result will be stored into
|
|
* \return mantissa of the result
|
|
*/
|
|
FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e);
|
|
|
|
/**
|
|
* \brief calculate logarithm of base 2 of x_m * 2^(x_e)
|
|
* \param x_m mantissa of the input value.
|
|
* \param x_e exponent of the input value.
|
|
* \param pointer to an INT where the exponent of the result is returned into.
|
|
* \return mantissa of the result.
|
|
*/
|
|
FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e);
|
|
|
|
/**
|
|
* \brief calculate logarithm of base 2 of x_m * 2^(x_e)
|
|
* \param x_m mantissa of the input value.
|
|
* \param x_e exponent of the input value.
|
|
* \return mantissa of the result with implicit exponent of LD_DATA_SHIFT.
|
|
*/
|
|
FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e);
|
|
|
|
/**
|
|
* \brief Add with saturation of the result.
|
|
* \param a first summand
|
|
* \param b second summand
|
|
* \return saturated sum of a and b.
|
|
*/
|
|
inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b)
|
|
{
|
|
LONG sum;
|
|
|
|
sum = (LONG)(SHORT)a + (LONG)(SHORT)b;
|
|
sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL);
|
|
return (FIXP_SGL)(SHORT)sum;
|
|
}
|
|
|
|
/**
|
|
* \brief Add with saturation of the result.
|
|
* \param a first summand
|
|
* \param b second summand
|
|
* \return saturated sum of a and b.
|
|
*/
|
|
inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b)
|
|
{
|
|
LONG sum;
|
|
|
|
sum = (LONG)(a>>1) + (LONG)(b>>1);
|
|
sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1));
|
|
return (FIXP_DBL)(LONG)(sum<<1);
|
|
}
|
|
|
|
//#define TEST_ROUNDING
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
array for 1/n, n=1..80
|
|
|
|
****************************************************************************/
|
|
|
|
extern const FIXP_DBL invCount[80];
|
|
|
|
LNK_SECTION_INITCODE
|
|
inline void InitInvInt(void) {}
|
|
|
|
|
|
/**
|
|
* \brief Calculate the value of 1/i where i is a integer value. It supports
|
|
* input values from 1 upto 80.
|
|
* \param intValue Integer input value.
|
|
* \param FIXP_DBL representation of 1/intValue
|
|
*/
|
|
inline FIXP_DBL GetInvInt(int intValue)
|
|
{
|
|
FDK_ASSERT((intValue > 0) && (intValue < 80));
|
|
FDK_ASSERT(intValue<80);
|
|
return invCount[intValue];
|
|
}
|
|
|
|
|
|
#endif
|
|
|