mirror of https://github.com/mstorsjo/fdk-aac.git
451 lines
15 KiB
C++
451 lines
15 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/*********************** MPEG surround encoder library *************************
|
|
|
|
Author(s): Josef Hoepfl
|
|
|
|
Description: Encoder Library Interface
|
|
vector functions
|
|
|
|
*******************************************************************************/
|
|
|
|
/*****************************************************************************
|
|
\file
|
|
This file contains vector functions
|
|
******************************************************************************/
|
|
|
|
/* Includes ******************************************************************/
|
|
#include "sacenc_vectorfunctions.h"
|
|
|
|
/* Defines *******************************************************************/
|
|
|
|
/* Data Types ****************************************************************/
|
|
|
|
/* Constants *****************************************************************/
|
|
|
|
/* Function / Class Declarations *********************************************/
|
|
|
|
/* Function / Class Definition ***********************************************/
|
|
|
|
FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode,
|
|
const INT inScaleFactor, INT *const outScaleFactor,
|
|
const INT n) {
|
|
int i, cs;
|
|
|
|
if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
|
|
/* calculate headroom */
|
|
FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
|
|
for (i = 0; i < n; i++) {
|
|
maxVal |= fAbs(x[i].v.re);
|
|
maxVal |= fAbs(x[i].v.im);
|
|
}
|
|
cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
|
|
} else {
|
|
cs = inScaleFactor;
|
|
}
|
|
|
|
/* consider scaling of energy and scaling in fPow2Div2 and addition */
|
|
*outScaleFactor = 2 * cs + 2;
|
|
|
|
/* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
|
|
* (DFRACT_BITS-1) */
|
|
cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
|
|
|
|
/* sum up complex energy samples */
|
|
FIXP_DBL re, im, sum;
|
|
|
|
re = im = sum = FL2FXCONST_DBL(0.0);
|
|
if (cs < 0) {
|
|
cs = -cs;
|
|
for (i = 0; i < n; i++) {
|
|
re += fPow2Div2(x[i].v.re << cs);
|
|
im += fPow2Div2(x[i].v.im << cs);
|
|
}
|
|
} else {
|
|
cs = 2 * cs;
|
|
for (i = 0; i < n; i++) {
|
|
re += fPow2Div2(x[i].v.re) >> cs;
|
|
im += fPow2Div2(x[i].v.im) >> cs;
|
|
}
|
|
}
|
|
|
|
sum = (re >> 1) + (im >> 1);
|
|
|
|
return (sum);
|
|
}
|
|
|
|
FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode,
|
|
const INT inScaleFactor, INT *const outScaleFactor,
|
|
const INT sDim1, const INT nDim1, const INT sDim2,
|
|
const INT nDim2) {
|
|
int i, j, cs;
|
|
|
|
if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
|
|
/* calculate headroom */
|
|
FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
maxVal |= fAbs(x[i][j].v.re);
|
|
maxVal |= fAbs(x[i][j].v.im);
|
|
}
|
|
}
|
|
cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
|
|
} else {
|
|
cs = inScaleFactor;
|
|
}
|
|
|
|
/* consider scaling of energy and scaling in fPow2Div2 and addition */
|
|
*outScaleFactor = 2 * cs + 2;
|
|
|
|
/* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
|
|
* (DFRACT_BITS-1) */
|
|
cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
|
|
|
|
/* sum up complex energy samples */
|
|
FIXP_DBL re, im, sum;
|
|
|
|
re = im = sum = FL2FXCONST_DBL(0.0);
|
|
if (cs < 0) {
|
|
cs = -cs;
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
re += fPow2Div2(x[i][j].v.re << cs);
|
|
im += fPow2Div2(x[i][j].v.im << cs);
|
|
}
|
|
}
|
|
} else {
|
|
cs = 2 * cs;
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
re += fPow2Div2(x[i][j].v.re) >> cs;
|
|
im += fPow2Div2(x[i][j].v.im) >> cs;
|
|
}
|
|
}
|
|
}
|
|
|
|
sum = (re >> 1) + (im >> 1);
|
|
|
|
return (sum);
|
|
}
|
|
|
|
void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n) {
|
|
FDKmemmove(Z, X, sizeof(FIXP_DPK) * n);
|
|
}
|
|
|
|
void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n) {
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
Z[i].v.re = a;
|
|
Z[i].v.im = a;
|
|
}
|
|
}
|
|
|
|
void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X,
|
|
const FIXP_DPK *const *const Y, const INT scaleX,
|
|
const INT scaleY, INT *const scaleZ,
|
|
const INT sDim1, const INT nDim1, const INT sDim2,
|
|
const INT nDim2) {
|
|
int i, j, sx, sy;
|
|
FIXP_DBL xre, yre, xim, yim, re, im;
|
|
|
|
/* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
|
|
* (DFRACT_BITS-1) */
|
|
sx = fixMax(fixMin(scaleX, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
|
|
sy = fixMax(fixMin(scaleY, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
|
|
|
|
/* consider scaling of energy and scaling in fMultDiv2 and shift of result
|
|
* values */
|
|
*scaleZ = sx + sy + 2;
|
|
|
|
re = (FIXP_DBL)0;
|
|
im = (FIXP_DBL)0;
|
|
if ((sx < 0) && (sy < 0)) {
|
|
sx = -sx;
|
|
sy = -sy;
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
xre = X[i][j].v.re << sx;
|
|
xim = X[i][j].v.im << sx;
|
|
yre = Y[i][j].v.re << sy;
|
|
yim = Y[i][j].v.im << sy;
|
|
re += fMultDiv2(xre, yre) + fMultDiv2(xim, yim);
|
|
im += fMultDiv2(xim, yre) - fMultDiv2(xre, yim);
|
|
}
|
|
}
|
|
} else if ((sx >= 0) && (sy >= 0)) {
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
xre = X[i][j].v.re;
|
|
xim = X[i][j].v.im;
|
|
yre = Y[i][j].v.re;
|
|
yim = Y[i][j].v.im;
|
|
re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> (sx + sy);
|
|
im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> (sx + sy);
|
|
}
|
|
}
|
|
} else if ((sx < 0) && (sy >= 0)) {
|
|
sx = -sx;
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
xre = X[i][j].v.re << sx;
|
|
xim = X[i][j].v.im << sx;
|
|
yre = Y[i][j].v.re;
|
|
yim = Y[i][j].v.im;
|
|
re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sy;
|
|
im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sy;
|
|
}
|
|
}
|
|
} else {
|
|
sy = -sy;
|
|
for (i = sDim1; i < nDim1; i++) {
|
|
for (j = sDim2; j < nDim2; j++) {
|
|
xre = X[i][j].v.re;
|
|
xim = X[i][j].v.im;
|
|
yre = Y[i][j].v.re << sy;
|
|
yim = Y[i][j].v.im << sy;
|
|
re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sx;
|
|
im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sx;
|
|
}
|
|
}
|
|
}
|
|
|
|
Z->v.re = re >> 1;
|
|
Z->v.im = im >> 1;
|
|
}
|
|
|
|
void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12,
|
|
const FIXP_DBL *const p1, const FIXP_DBL *const p2,
|
|
const INT n) {
|
|
int i, s;
|
|
FIXP_DBL p12, cor;
|
|
|
|
/* correlation */
|
|
for (i = 0; i < n; i++) {
|
|
p12 = fMult(p1[i], p2[i]);
|
|
if (p12 > FL2FXCONST_DBL(0.0f)) {
|
|
p12 = invSqrtNorm2(p12, &s);
|
|
cor = fMult(pr12[i], p12);
|
|
z[i] = SATURATE_LEFT_SHIFT(cor, s, DFRACT_BITS);
|
|
} else {
|
|
z[i] = (FIXP_DBL)MAXVAL_DBL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r,
|
|
const FIXP_DBL *const p12i, const FIXP_DBL *const p1,
|
|
const FIXP_DBL *const p2, const INT scaleP12,
|
|
const INT scaleP, const INT n) {
|
|
int i, s, s1, s2;
|
|
FIXP_DBL coh, p12, p12ri;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
s2 = fixMin(fixMax(0, CountLeadingBits(p12r[i]) - 1),
|
|
fixMax(0, CountLeadingBits(p12i[i]) - 1));
|
|
p12ri = sqrtFixp(fPow2Div2(p12r[i] << s2) + fPow2Div2(p12i[i] << s2));
|
|
s1 = fixMin(fixMax(0, CountLeadingBits(p1[i]) - 1),
|
|
fixMax(0, CountLeadingBits(p2[i]) - 1));
|
|
p12 = fMultDiv2(p1[i] << s1, p2[i] << s1);
|
|
|
|
if (p12 > FL2FXCONST_DBL(0.0f)) {
|
|
p12 = invSqrtNorm2(p12, &s);
|
|
coh = fMult(p12ri, p12);
|
|
s = fixMax(fixMin((scaleP12 - scaleP + s + s1 - s2), DFRACT_BITS - 1),
|
|
-(DFRACT_BITS - 1));
|
|
if (s < 0) {
|
|
z[i] = coh >> (-s);
|
|
} else {
|
|
z[i] = SATURATE_LEFT_SHIFT(coh, s, DFRACT_BITS);
|
|
}
|
|
} else {
|
|
z[i] = (FIXP_DBL)MAXVAL_DBL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a,
|
|
const FIXP_DPK *const *const X, const FIXP_DBL *const b,
|
|
const FIXP_DPK *const *const Y, const INT scale,
|
|
INT *const scaleCh1, const INT scaleCh2,
|
|
const UCHAR *const pParameterBand2HybridBandOffset,
|
|
const INT nParameterBands, const INT nTimeSlots,
|
|
const INT startTimeSlot) {
|
|
int pb, j, i;
|
|
int cs, s1, s2;
|
|
|
|
/* determine maximum scale of both channels */
|
|
cs = fixMax(*scaleCh1, scaleCh2);
|
|
s1 = cs - (*scaleCh1);
|
|
s2 = cs - scaleCh2;
|
|
|
|
/* scalefactor 1 is updated with common scale of channel 1 and channel2 */
|
|
*scaleCh1 = cs;
|
|
|
|
/* scale of a and b; additional scale for fMultDiv2() */
|
|
for (j = 0, pb = 0; pb < nParameterBands; pb++) {
|
|
FIXP_DBL aPb, bPb;
|
|
aPb = a[pb], bPb = b[pb];
|
|
for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
|
|
for (i = startTimeSlot; i < nTimeSlots; i++) {
|
|
Z[j][i].v.re = ((fMultDiv2(aPb, X[j][i].v.re) >> s1) +
|
|
(fMultDiv2(bPb, Y[j][i].v.re) >> s2))
|
|
<< (scale + 1);
|
|
Z[j][i].v.im = ((fMultDiv2(aPb, X[j][i].v.im) >> s1) +
|
|
(fMultDiv2(bPb, Y[j][i].v.im) >> s2))
|
|
<< (scale + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x,
|
|
const UCHAR *const pParameterBand2HybridBandOffset,
|
|
INT *const outScaleFactor, const INT startTimeSlot,
|
|
const INT nTimeSlots, const INT nParamBands) {
|
|
int i, j, pb;
|
|
|
|
/* calculate headroom */
|
|
for (j = 0, pb = 0; pb < nParamBands; pb++) {
|
|
FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
|
|
for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
|
|
for (i = startTimeSlot; i < nTimeSlots; i++) {
|
|
maxVal |= fAbs(x[i][j].v.re);
|
|
maxVal |= fAbs(x[i][j].v.im);
|
|
}
|
|
}
|
|
outScaleFactor[pb] = -fixMax(0, CntLeadingZeros(maxVal) - 1);
|
|
}
|
|
}
|
|
|
|
INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y,
|
|
const INT n) {
|
|
int i;
|
|
|
|
/* calculate headroom */
|
|
FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
|
|
if (x != NULL) {
|
|
for (i = 0; i < n; i++) {
|
|
maxVal |= fAbs(x[i]);
|
|
}
|
|
}
|
|
|
|
if (y != NULL) {
|
|
for (i = 0; i < n; i++) {
|
|
maxVal |= fAbs(y[i]);
|
|
}
|
|
}
|
|
|
|
if (maxVal == (FIXP_DBL)0)
|
|
return (-(DFRACT_BITS - 1));
|
|
else
|
|
return (-CountLeadingBits(maxVal));
|
|
}
|
|
|
|
INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand,
|
|
const INT bands) {
|
|
INT qs, clz;
|
|
FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
|
|
|
|
for (qs = startBand; qs < bands; qs++) {
|
|
maxVal |= fAbs(x[qs].v.re);
|
|
maxVal |= fAbs(x[qs].v.im);
|
|
}
|
|
|
|
clz = -fixMax(0, CntLeadingZeros(maxVal) - 1);
|
|
|
|
return (clz);
|
|
}
|