mirror of
https://github.com/mstorsjo/fdk-aac.git
synced 2025-02-21 13:20:36 +01:00
Bug: 186777497 Test: atest android.media.cts.DecoderTestAacFormat android.media.cts.DecoderTestXheAac android.media.cts.DecoderTestAacDrc Change-Id: I5af625905b1e4365fa84423d186c227a49707f72
839 lines
25 KiB
C++
839 lines
25 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/**************************** SBR decoder library ******************************
|
|
|
|
Author(s):
|
|
|
|
Description:
|
|
|
|
*******************************************************************************/
|
|
|
|
/*!
|
|
\file
|
|
\brief Frequency scale calculation
|
|
*/
|
|
|
|
#include "sbrdec_freq_sca.h"
|
|
|
|
#include "transcendent.h"
|
|
#include "sbr_rom.h"
|
|
#include "env_extr.h"
|
|
|
|
#include "genericStds.h" /* need log() for debug-code only */
|
|
|
|
#define MAX_OCTAVE 29
|
|
#define MAX_SECOND_REGION 50
|
|
|
|
static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
|
|
static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
|
|
static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
|
|
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
|
|
UCHAR *start_adress);
|
|
|
|
/*!
|
|
\brief Retrieve QMF-band where the SBR range starts
|
|
|
|
Convert startFreq which was read from the bitstream into a
|
|
QMF-channel number.
|
|
|
|
\return Number of start band
|
|
*/
|
|
static UCHAR getStartBand(
|
|
UINT fs, /*!< Output sampling frequency */
|
|
UCHAR startFreq, /*!< Index to table of possible start bands */
|
|
UINT headerDataFlags) /*!< Info to SBR mode */
|
|
{
|
|
INT band;
|
|
UINT fsMapped = fs;
|
|
SBR_RATE rate = DUAL;
|
|
|
|
if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
|
|
if (headerDataFlags & SBRDEC_QUAD_RATE) {
|
|
rate = QUAD;
|
|
}
|
|
fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
|
|
}
|
|
|
|
FDK_ASSERT(2 * (rate + 1) <= (4));
|
|
|
|
switch (fsMapped) {
|
|
case 192000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
|
|
break;
|
|
case 176400:
|
|
band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
|
|
break;
|
|
case 128000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
|
|
break;
|
|
case 96000:
|
|
case 88200:
|
|
band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
|
|
break;
|
|
case 64000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
|
|
break;
|
|
case 48000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
|
|
break;
|
|
case 44100:
|
|
band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
|
|
break;
|
|
case 40000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
|
|
break;
|
|
case 32000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
|
|
break;
|
|
case 24000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
|
|
break;
|
|
case 22050:
|
|
band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
|
|
break;
|
|
case 16000:
|
|
band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
|
|
break;
|
|
default:
|
|
band = 255;
|
|
}
|
|
|
|
return band;
|
|
}
|
|
|
|
/*!
|
|
\brief Retrieve QMF-band where the SBR range starts
|
|
|
|
Convert startFreq which was read from the bitstream into a
|
|
QMF-channel number.
|
|
|
|
\return Number of start band
|
|
*/
|
|
static UCHAR getStopBand(
|
|
UINT fs, /*!< Output sampling frequency */
|
|
UCHAR stopFreq, /*!< Index to table of possible start bands */
|
|
UINT headerDataFlags, /*!< Info to SBR mode */
|
|
UCHAR k0) /*!< Start freq index */
|
|
{
|
|
UCHAR k2;
|
|
|
|
if (stopFreq < 14) {
|
|
INT stopMin;
|
|
INT num = 2 * (64);
|
|
UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
|
|
UCHAR *diff0 = diff_tot;
|
|
UCHAR *diff1 = diff_tot + MAX_OCTAVE;
|
|
|
|
if (headerDataFlags & SBRDEC_QUAD_RATE) {
|
|
num >>= 1;
|
|
}
|
|
|
|
if (fs < 32000) {
|
|
stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
|
|
} else {
|
|
if (fs < 64000) {
|
|
stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
|
|
} else {
|
|
stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
|
|
}
|
|
}
|
|
|
|
stopMin = fMin(stopMin, 64);
|
|
|
|
/*
|
|
Choose a stop band between k1 and 64 depending on stopFreq (0..13),
|
|
based on a logarithmic scale.
|
|
The vectors diff0 and diff1 are used temporarily here.
|
|
*/
|
|
CalcBands(diff0, stopMin, 64, 13);
|
|
shellsort(diff0, 13);
|
|
cumSum(stopMin, diff0, 13, diff1);
|
|
k2 = diff1[stopFreq];
|
|
} else if (stopFreq == 14)
|
|
k2 = 2 * k0;
|
|
else
|
|
k2 = 3 * k0;
|
|
|
|
/* Limit to Nyquist */
|
|
if (k2 > (64)) k2 = (64);
|
|
|
|
/* Range checks */
|
|
/* 1 <= difference <= 48; 1 <= fs <= 96000 */
|
|
{
|
|
UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
|
|
? MAX_FREQ_COEFFS_QUAD_RATE
|
|
: MAX_FREQ_COEFFS;
|
|
if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
|
|
return 255;
|
|
}
|
|
}
|
|
|
|
if (headerDataFlags & SBRDEC_QUAD_RATE) {
|
|
return k2; /* skip other checks: (k2 - k0) must be <=
|
|
MAX_FREQ_COEFFS_QUAD_RATE for all fs */
|
|
}
|
|
if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
|
|
/* 1 <= difference <= 35; 42000 <= fs <= 96000 */
|
|
if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
|
|
return 255;
|
|
}
|
|
/* 1 <= difference <= 32; 46009 <= fs <= 96000 */
|
|
if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
|
|
return 255;
|
|
}
|
|
} else {
|
|
/* 1 <= difference <= 35; fs == 44100 */
|
|
if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
|
|
return 255;
|
|
}
|
|
/* 1 <= difference <= 32; 48000 <= fs <= 96000 */
|
|
if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
|
|
return 255;
|
|
}
|
|
}
|
|
|
|
return k2;
|
|
}
|
|
|
|
/*!
|
|
\brief Generates master frequency tables
|
|
|
|
Frequency tables are calculated according to the selected domain
|
|
(linear/logarithmic) and granularity.
|
|
IEC 14496-3 4.6.18.3.2.1
|
|
|
|
\return errorCode, 0 if successful
|
|
*/
|
|
SBR_ERROR
|
|
sbrdecUpdateFreqScale(
|
|
UCHAR *v_k_master, /*!< Master table to be created */
|
|
UCHAR *numMaster, /*!< Number of entries in master table */
|
|
UINT fs, /*!< SBR working sampling rate */
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
|
|
UINT flags) {
|
|
FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
|
|
INT dk = 0;
|
|
|
|
/* Internal variables */
|
|
UCHAR k0, k2, i;
|
|
UCHAR num_bands0 = 0;
|
|
UCHAR num_bands1 = 0;
|
|
UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
|
|
UCHAR *diff0 = diff_tot;
|
|
UCHAR *diff1 = diff_tot + MAX_OCTAVE;
|
|
INT k2_achived;
|
|
INT k2_diff;
|
|
INT incr = 0;
|
|
|
|
/*
|
|
Determine start band
|
|
*/
|
|
if (flags & SBRDEC_QUAD_RATE) {
|
|
fs >>= 1;
|
|
}
|
|
|
|
k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
|
|
if (k0 == 255) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
/*
|
|
Determine stop band
|
|
*/
|
|
k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
|
|
if (k2 == 255) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
|
|
INT k1;
|
|
|
|
if (hHeaderData->bs_data.freqScale == 1) {
|
|
bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
|
|
} else if (hHeaderData->bs_data.freqScale == 2) {
|
|
bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
|
|
} else {
|
|
bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
|
|
}
|
|
|
|
/* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
|
|
* 4:1 system when bs_freq_scale > 0 */
|
|
if (flags & SBRDEC_QUAD_RATE) {
|
|
if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
|
|
bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
|
|
<< ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
|
|
}
|
|
}
|
|
|
|
if (1000 * k2 > 2245 * k0) { /* Two or more regions */
|
|
k1 = 2 * k0;
|
|
|
|
num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
|
|
num_bands1 =
|
|
numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
|
|
if (num_bands0 < 1) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
if (num_bands1 < 1) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
CalcBands(diff0, k0, k1, num_bands0);
|
|
shellsort(diff0, num_bands0);
|
|
if (diff0[0] == 0) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
cumSum(k0, diff0, num_bands0, v_k_master);
|
|
|
|
CalcBands(diff1, k1, k2, num_bands1);
|
|
shellsort(diff1, num_bands1);
|
|
if (diff0[num_bands0 - 1] > diff1[0]) {
|
|
SBR_ERROR err;
|
|
|
|
err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
|
|
if (err) return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
/* Add 2nd region */
|
|
cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
|
|
*numMaster = num_bands0 + num_bands1; /* Output nr of bands */
|
|
|
|
} else { /* Only one region */
|
|
k1 = k2;
|
|
|
|
num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
|
|
if (num_bands0 < 1) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
CalcBands(diff0, k0, k1, num_bands0);
|
|
shellsort(diff0, num_bands0);
|
|
if (diff0[0] == 0) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
cumSum(k0, diff0, num_bands0, v_k_master);
|
|
*numMaster = num_bands0; /* Output nr of bands */
|
|
}
|
|
} else { /* Linear mode */
|
|
if (hHeaderData->bs_data.alterScale == 0) {
|
|
dk = 1;
|
|
/* FLOOR to get to few number of bands (next lower even number) */
|
|
num_bands0 = (k2 - k0) & 254;
|
|
} else {
|
|
dk = 2;
|
|
num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
|
|
}
|
|
|
|
if (num_bands0 < 1) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
/* We must return already here because 'i' can become negative below. */
|
|
}
|
|
|
|
k2_achived = k0 + num_bands0 * dk;
|
|
k2_diff = k2 - k2_achived;
|
|
|
|
for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;
|
|
|
|
/* If linear scale wasn't achieved */
|
|
/* and we got too wide SBR area */
|
|
if (k2_diff < 0) {
|
|
incr = 1;
|
|
i = 0;
|
|
}
|
|
|
|
/* If linear scale wasn't achieved */
|
|
/* and we got too small SBR area */
|
|
if (k2_diff > 0) {
|
|
incr = -1;
|
|
i = num_bands0 - 1;
|
|
}
|
|
|
|
/* Adjust diff vector to get sepc. SBR range */
|
|
while (k2_diff != 0) {
|
|
diff_tot[i] = diff_tot[i] - incr;
|
|
i = i + incr;
|
|
k2_diff = k2_diff + incr;
|
|
}
|
|
|
|
cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
|
|
*numMaster = num_bands0; /* Output nr of bands */
|
|
}
|
|
|
|
if (*numMaster < 1) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
/* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
|
|
if (flags & SBRDEC_QUAD_RATE) {
|
|
int k;
|
|
for (k = 1; k < *numMaster; k++) {
|
|
if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Print out the calculated table
|
|
*/
|
|
|
|
return SBRDEC_OK;
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate frequency ratio of one SBR band
|
|
|
|
All SBR bands should span a constant frequency range in the logarithmic
|
|
domain. This function calculates the ratio of any SBR band's upper and lower
|
|
frequency.
|
|
|
|
\return num_band-th root of k_start/k_stop
|
|
*/
|
|
static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
|
|
/* Scaled bandfactor and step 1 bit right to avoid overflow
|
|
* use double data type */
|
|
FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
|
|
FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
|
|
|
|
int direction = 1;
|
|
|
|
/* Because saturation can't be done in INT IIS,
|
|
* changed start and stop data type from FIXP_SGL to FIXP_DBL */
|
|
FIXP_DBL start = k_start << (DFRACT_BITS - 8);
|
|
FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);
|
|
|
|
FIXP_DBL temp;
|
|
|
|
int j, i = 0;
|
|
|
|
while (step > FL2FXCONST_DBL(0.0f)) {
|
|
i++;
|
|
temp = stop;
|
|
|
|
/* Calculate temp^num_bands: */
|
|
for (j = 0; j < num_bands; j++)
|
|
// temp = fMult(temp,bandfactor);
|
|
temp = fMultDiv2(temp, bandfactor) << 2;
|
|
|
|
if (temp < start) { /* Factor too strong, make it weaker */
|
|
if (direction == 0)
|
|
/* Halfen step. Right shift is not done as fract because otherwise the
|
|
lowest bit cannot be cleared due to rounding */
|
|
step = (FIXP_DBL)((LONG)step >> 1);
|
|
direction = 1;
|
|
bandfactor = bandfactor + step;
|
|
} else { /* Factor is too weak: make it stronger */
|
|
if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
|
|
direction = 0;
|
|
bandfactor = bandfactor - step;
|
|
}
|
|
|
|
if (i > 100) {
|
|
step = FL2FXCONST_DBL(0.0f);
|
|
}
|
|
}
|
|
return (bandfactor >= FL2FXCONST_DBL(0.5)) ? (FIXP_SGL)MAXVAL_SGL
|
|
: FX_DBL2FX_SGL(bandfactor << 1);
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate number of SBR bands between start and stop band
|
|
|
|
Given the number of bands per octave, this function calculates how many
|
|
bands fit in the given frequency range.
|
|
When the warpFlag is set, the 'band density' is decreased by a factor
|
|
of 1/1.3
|
|
|
|
\return number of bands
|
|
*/
|
|
static int numberOfBands(
|
|
FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
|
|
int start, /*!< First QMF band of SBR frequency range */
|
|
int stop, /*!< Last QMF band of SBR frequency range + 1 */
|
|
int warpFlag) /*!< Stretching flag */
|
|
{
|
|
FIXP_SGL num_bands_div128;
|
|
int num_bands;
|
|
|
|
num_bands_div128 =
|
|
FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));
|
|
|
|
if (warpFlag) {
|
|
/* Apply the warp factor of 1.3 to get wider bands. We use a value
|
|
of 32768/25200 instead of the exact value to avoid critical cases
|
|
of rounding.
|
|
*/
|
|
num_bands_div128 = FX_DBL2FX_SGL(
|
|
fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
|
|
}
|
|
|
|
/* add scaled 1 for rounding to even numbers: */
|
|
num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
|
|
/* scale back to right aligned integer and double the value: */
|
|
num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
|
|
|
|
return (num_bands);
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate width of SBR bands
|
|
|
|
Given the desired number of bands within the SBR frequency range,
|
|
this function calculates the width of each SBR band in QMF channels.
|
|
The bands get wider from start to stop (bark scale).
|
|
*/
|
|
static void CalcBands(UCHAR *diff, /*!< Vector of widths to be calculated */
|
|
UCHAR start, /*!< Lower end of subband range */
|
|
UCHAR stop, /*!< Upper end of subband range */
|
|
UCHAR num_bands) /*!< Desired number of bands */
|
|
{
|
|
int i;
|
|
int previous;
|
|
int current;
|
|
FIXP_SGL exact, temp;
|
|
FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
|
|
|
|
previous = stop; /* Start with highest QMF channel */
|
|
exact = (FIXP_SGL)(
|
|
stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */
|
|
|
|
for (i = num_bands - 1; i >= 0; i--) {
|
|
/* Calculate border of next lower sbr band */
|
|
exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));
|
|
|
|
/* Add scaled 0.5 for rounding:
|
|
We use a value 128/256 instead of 0.5 to avoid some critical cases of
|
|
rounding. */
|
|
temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);
|
|
|
|
/* scale back to right alinged integer: */
|
|
current = (LONG)temp >> (FRACT_BITS - 8);
|
|
|
|
/* Save width of band i */
|
|
diff[i] = previous - current;
|
|
previous = current;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate cumulated sum vector from delta vector
|
|
*/
|
|
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
|
|
UCHAR *start_adress) {
|
|
int i;
|
|
start_adress[0] = start_value;
|
|
for (i = 1; i <= length; i++)
|
|
start_adress[i] = start_adress[i - 1] + diff[i - 1];
|
|
}
|
|
|
|
/*!
|
|
\brief Adapt width of frequency bands in the second region
|
|
|
|
If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
|
|
is calculated separately. This function tries to avoid that the second region
|
|
starts with a band smaller than the highest band of the first region.
|
|
*/
|
|
static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
|
|
UCHAR length) {
|
|
int change = max_band_previous - diff[0];
|
|
|
|
/* Limit the change so that the last band cannot get narrower than the first
|
|
* one */
|
|
if (change > (diff[length - 1] - diff[0]) >> 1)
|
|
change = (diff[length - 1] - diff[0]) >> 1;
|
|
|
|
diff[0] += change;
|
|
diff[length - 1] -= change;
|
|
shellsort(diff, length);
|
|
|
|
return SBRDEC_OK;
|
|
}
|
|
|
|
/*!
|
|
\brief Update high resolution frequency band table
|
|
*/
|
|
static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
|
|
UCHAR *v_k_master, UCHAR num_bands,
|
|
UCHAR xover_band) {
|
|
UCHAR i;
|
|
|
|
*num_hires = num_bands - xover_band;
|
|
|
|
for (i = xover_band; i <= num_bands; i++) {
|
|
h_hires[i - xover_band] = v_k_master[i];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Build low resolution table out of high resolution table
|
|
*/
|
|
static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
|
|
UCHAR num_hires) {
|
|
UCHAR i;
|
|
|
|
if ((num_hires & 1) == 0) {
|
|
/* If even number of hires bands */
|
|
*num_lores = num_hires >> 1;
|
|
/* Use every second lores=hires[0,2,4...] */
|
|
for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
|
|
} else {
|
|
/* Odd number of hires, which means xover is odd */
|
|
*num_lores = (num_hires + 1) >> 1;
|
|
/* Use lores=hires[0,1,3,5 ...] */
|
|
h_lores[0] = h_hires[0];
|
|
for (i = 1; i <= *num_lores; i++) {
|
|
h_lores[i] = h_hires[i * 2 - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Derive a low-resolution frequency-table from the master frequency
|
|
table
|
|
*/
|
|
void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
|
|
UCHAR *freqBandTableRef, UCHAR num_Ref) {
|
|
int step;
|
|
int i, j;
|
|
int org_length, result_length;
|
|
int v_index[MAX_FREQ_COEFFS >> 1];
|
|
|
|
/* init */
|
|
org_length = num_Ref;
|
|
result_length = num_result;
|
|
|
|
v_index[0] = 0; /* Always use left border */
|
|
i = 0;
|
|
while (org_length > 0) {
|
|
/* Create downsample vector */
|
|
i++;
|
|
step = org_length / result_length;
|
|
org_length = org_length - step;
|
|
result_length--;
|
|
v_index[i] = v_index[i - 1] + step;
|
|
}
|
|
|
|
for (j = 0; j <= i; j++) {
|
|
/* Use downsample vector to index LoResolution vector */
|
|
v_result[j] = freqBandTableRef[v_index[j]];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Sorting routine
|
|
*/
|
|
void shellsort(UCHAR *in, UCHAR n) {
|
|
int i, j, v, w;
|
|
int inc = 1;
|
|
|
|
do
|
|
inc = 3 * inc + 1;
|
|
while (inc <= n);
|
|
|
|
do {
|
|
inc = inc / 3;
|
|
for (i = inc; i < n; i++) {
|
|
v = in[i];
|
|
j = i;
|
|
while ((w = in[j - inc]) > v) {
|
|
in[j] = w;
|
|
j -= inc;
|
|
if (j < inc) break;
|
|
}
|
|
in[j] = v;
|
|
}
|
|
} while (inc > 1);
|
|
}
|
|
|
|
/*!
|
|
\brief Reset frequency band tables
|
|
\return errorCode, 0 if successful
|
|
*/
|
|
SBR_ERROR
|
|
resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
|
|
SBR_ERROR err = SBRDEC_OK;
|
|
int k2, kx, lsb, usb;
|
|
int intTemp;
|
|
UCHAR nBandsLo, nBandsHi;
|
|
HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
|
|
|
|
/* Calculate master frequency function */
|
|
err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
|
|
hHeaderData->sbrProcSmplRate, hHeaderData, flags);
|
|
|
|
if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
/* Derive Hiresolution from master frequency function */
|
|
sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
|
|
hFreq->numMaster, hHeaderData->bs_info.xover_band);
|
|
/* Derive Loresolution from Hiresolution */
|
|
sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
|
|
nBandsHi);
|
|
|
|
/* Check index to freqBandTable[0] */
|
|
if (!(nBandsLo > 0) ||
|
|
(nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
|
|
? MAX_FREQ_COEFFS_QUAD_RATE
|
|
: MAX_FREQ_COEFFS_DUAL_RATE) >>
|
|
1))) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
hFreq->nSfb[0] = nBandsLo;
|
|
hFreq->nSfb[1] = nBandsHi;
|
|
|
|
lsb = hFreq->freqBandTable[0][0];
|
|
usb = hFreq->freqBandTable[0][nBandsLo];
|
|
|
|
/* Check for start frequency border k_x:
|
|
- ISO/IEC 14496-3 4.6.18.3.6 Requirements
|
|
- ISO/IEC 23003-3 7.5.5.2 Modifications and additions to the MPEG-4 SBR
|
|
tool
|
|
*/
|
|
/* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
|
|
* for 24 band QMF analysis. */
|
|
if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
/* Calculate number of noise bands */
|
|
|
|
k2 = hFreq->freqBandTable[1][nBandsHi];
|
|
kx = hFreq->freqBandTable[1][0];
|
|
|
|
if (hHeaderData->bs_data.noise_bands == 0) {
|
|
hFreq->nNfb = 1;
|
|
} else /* Calculate no of noise bands 1,2 or 3 bands/octave */
|
|
{
|
|
/* Fetch number of octaves divided by 32 */
|
|
intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;
|
|
|
|
/* Integer-Multiplication with number of bands: */
|
|
intTemp = intTemp * hHeaderData->bs_data.noise_bands;
|
|
|
|
/* Add scaled 0.5 for rounding: */
|
|
intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);
|
|
|
|
/* Convert to right-aligned integer: */
|
|
intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
|
|
|
|
if (intTemp == 0) intTemp = 1;
|
|
|
|
if (intTemp > MAX_NOISE_COEFFS) {
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
}
|
|
|
|
hFreq->nNfb = intTemp;
|
|
}
|
|
|
|
hFreq->nInvfBands = hFreq->nNfb;
|
|
|
|
/* Get noise bands */
|
|
sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
|
|
hFreq->freqBandTable[0], nBandsLo);
|
|
|
|
/* save old highband; required for overlap in usac
|
|
when headerchange occurs at XVAR and VARX frame; */
|
|
hFreq->ov_highSubband = hFreq->highSubband;
|
|
|
|
hFreq->lowSubband = lsb;
|
|
hFreq->highSubband = usb;
|
|
|
|
return SBRDEC_OK;
|
|
}
|