mirror of
https://github.com/mstorsjo/fdk-aac.git
synced 2025-02-28 08:27:43 +01:00
Bug: 80053205 Test: see bug for repro with FB "wow" atest DecoderTestAacDrc Fix signed integer overflows in CLpc_SynthesisLattice() Change-Id: Icbddfcc8c5fc73382ae5bf8c2a7703802c688e06 Fix signed integer overflows in imlt Change-Id: I687834fca2f1aab6210ed9862576b4f38fcdeb24 Fix overflow in addLowbandEnergies() Change-Id: Iaa9fdf9deb49c33ec6ca7ed3081c4ddaa920e9aa Concealment fix for audio frames containing acelp components Change-Id: Ibe5e83a6efa75a48f729984a161a76b826878f4e Fix out-of-bounds access in PS concealment Change-Id: I08809a03a40d1feaf00e41278db314d67e1efe88 Fix potential memory leak in setup of qmf domain Change-Id: Id9fc2448354dc7f1b439469128407305efa3def2 Reject channel config 13 Change-Id: Idf5236f6cd054df994e69c9c972c97f6768cf9e5 Fix unsigned integer overflow in configExtension() Change-Id: I8a1668810b85e6237c3892891444ff08f04b019b Fix unsigned integer overflow in CAacDecoder_DecodeFrame() Change-Id: I79678c571690178e6c37680f70a9b94dd3cbc439 Fix unsigned integer overflow in aacDecoder_UpdateBitStreamCounters() Change-Id: I3bff959da9f53fabb18cd0ae6c260e6256194526 Fix unsigned integer overflow in transportDec_readStream() Change-Id: I6a6f9f4acaa32fae0b5de9641f8787bbc7f8286b
488 lines
16 KiB
C++
488 lines
16 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/******************* Library for basic calculation routines ********************
|
|
|
|
Author(s): Manuel Jander
|
|
|
|
Description: LPC related functions
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "FDK_lpc.h"
|
|
|
|
/* Internal scaling of LPC synthesis to avoid overflow of filte states.
|
|
This depends on the LPC order, because the LPC order defines the amount
|
|
of MAC operations. */
|
|
static SCHAR order_ld[LPC_MAX_ORDER] = {
|
|
/* Assume that Synthesis filter output does not clip and filter
|
|
accu does change no more than 1.0 for each iteration.
|
|
ceil(0.5*log((1:24))/log(2)) */
|
|
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3};
|
|
|
|
/* IIRLattice */
|
|
#ifndef FUNCTION_CLpc_SynthesisLattice_SGL
|
|
void CLpc_SynthesisLattice(FIXP_DBL *signal, const int signal_size,
|
|
const int signal_e, const int signal_e_out,
|
|
const int inc, const FIXP_SGL *coeff,
|
|
const int order, FIXP_DBL *state) {
|
|
int i, j;
|
|
FIXP_DBL *pSignal;
|
|
int shift;
|
|
|
|
FDK_ASSERT(order <= LPC_MAX_ORDER);
|
|
FDK_ASSERT(order > 0);
|
|
|
|
if (inc == -1)
|
|
pSignal = &signal[signal_size - 1];
|
|
else
|
|
pSignal = &signal[0];
|
|
|
|
/*
|
|
tmp = x(k) - K(M)*g(M);
|
|
for m=M-1:-1:1
|
|
tmp = tmp - K(m) * g(m);
|
|
g(m+1) = g(m) + K(m) * tmp;
|
|
endfor
|
|
g(1) = tmp;
|
|
|
|
y(k) = tmp;
|
|
*/
|
|
|
|
shift = -order_ld[order - 1];
|
|
|
|
for (i = signal_size; i != 0; i--) {
|
|
FIXP_DBL *pState = state + order - 1;
|
|
const FIXP_SGL *pCoeff = coeff + order - 1;
|
|
FIXP_DBL tmp;
|
|
|
|
tmp = scaleValue(*pSignal, shift + signal_e) -
|
|
fMultDiv2(*pCoeff--, *pState--);
|
|
for (j = order - 1; j != 0; j--) {
|
|
tmp = fMultSubDiv2(tmp, pCoeff[0], pState[0]);
|
|
pState[1] = pState[0] + (fMultDiv2(*pCoeff--, tmp) << 2);
|
|
pState--;
|
|
}
|
|
|
|
*pSignal = scaleValueSaturate(tmp, -shift - signal_e_out);
|
|
|
|
/* exponent of state[] is -1 */
|
|
pState[1] = tmp << 1;
|
|
pSignal += inc;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_CLpc_SynthesisLattice_DBL
|
|
void CLpc_SynthesisLattice(FIXP_DBL *signal, const int signal_size,
|
|
const int signal_e, const int signal_e_out,
|
|
const int inc, const FIXP_DBL *coeff,
|
|
const int order, FIXP_DBL *state) {
|
|
int i, j;
|
|
FIXP_DBL *pSignal;
|
|
|
|
FDK_ASSERT(order <= LPC_MAX_ORDER);
|
|
FDK_ASSERT(order > 0);
|
|
|
|
if (inc == -1)
|
|
pSignal = &signal[signal_size - 1];
|
|
else
|
|
pSignal = &signal[0];
|
|
|
|
FDK_ASSERT(signal_size > 0);
|
|
for (i = signal_size; i != 0; i--) {
|
|
FIXP_DBL *pState = state + order - 1;
|
|
const FIXP_DBL *pCoeff = coeff + order - 1;
|
|
FIXP_DBL tmp, accu;
|
|
|
|
accu =
|
|
fMultSubDiv2(scaleValue(*pSignal, signal_e - 1), *pCoeff--, *pState--);
|
|
tmp = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);
|
|
|
|
for (j = order - 1; j != 0; j--) {
|
|
accu = fMultSubDiv2(tmp >> 1, pCoeff[0], pState[0]);
|
|
tmp = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);
|
|
|
|
accu = fMultAddDiv2(pState[0] >> 1, *pCoeff--, tmp);
|
|
pState[1] = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);
|
|
|
|
pState--;
|
|
}
|
|
|
|
*pSignal = scaleValue(tmp, -signal_e_out);
|
|
|
|
/* exponent of state[] is 0 */
|
|
pState[1] = tmp;
|
|
pSignal += inc;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* LPC_SYNTHESIS_IIR version */
|
|
void CLpc_Synthesis(FIXP_DBL *signal, const int signal_size, const int signal_e,
|
|
const int inc, const FIXP_LPC_TNS *lpcCoeff_m,
|
|
const int lpcCoeff_e, const int order, FIXP_DBL *state,
|
|
int *pStateIndex) {
|
|
int i, j;
|
|
FIXP_DBL *pSignal;
|
|
int stateIndex = *pStateIndex;
|
|
|
|
FIXP_LPC_TNS coeff[2 * LPC_MAX_ORDER];
|
|
FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC_TNS));
|
|
FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC_TNS));
|
|
|
|
FDK_ASSERT(order <= LPC_MAX_ORDER);
|
|
FDK_ASSERT(stateIndex < order);
|
|
|
|
if (inc == -1)
|
|
pSignal = &signal[signal_size - 1];
|
|
else
|
|
pSignal = &signal[0];
|
|
|
|
/* y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order) */
|
|
|
|
for (i = 0; i < signal_size; i++) {
|
|
FIXP_DBL x;
|
|
const FIXP_LPC_TNS *pCoeff = coeff + order - stateIndex;
|
|
|
|
x = scaleValue(*pSignal, -(lpcCoeff_e + 1));
|
|
for (j = 0; j < order; j++) {
|
|
x -= fMultDiv2(state[j], pCoeff[j]);
|
|
}
|
|
x = SATURATE_SHIFT(x, -lpcCoeff_e - 1, DFRACT_BITS);
|
|
|
|
/* Update states */
|
|
stateIndex = ((stateIndex - 1) < 0) ? (order - 1) : (stateIndex - 1);
|
|
state[stateIndex] = x;
|
|
|
|
*pSignal = scaleValue(x, signal_e);
|
|
pSignal += inc;
|
|
}
|
|
|
|
*pStateIndex = stateIndex;
|
|
}
|
|
/* default version */
|
|
void CLpc_Synthesis(FIXP_DBL *signal, const int signal_size, const int signal_e,
|
|
const int inc, const FIXP_LPC *lpcCoeff_m,
|
|
const int lpcCoeff_e, const int order, FIXP_DBL *state,
|
|
int *pStateIndex) {
|
|
int i, j;
|
|
FIXP_DBL *pSignal;
|
|
int stateIndex = *pStateIndex;
|
|
|
|
FIXP_LPC coeff[2 * LPC_MAX_ORDER];
|
|
FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC));
|
|
FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC));
|
|
|
|
FDK_ASSERT(order <= LPC_MAX_ORDER);
|
|
FDK_ASSERT(stateIndex < order);
|
|
|
|
if (inc == -1)
|
|
pSignal = &signal[signal_size - 1];
|
|
else
|
|
pSignal = &signal[0];
|
|
|
|
/* y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order) */
|
|
|
|
for (i = 0; i < signal_size; i++) {
|
|
FIXP_DBL x;
|
|
const FIXP_LPC *pCoeff = coeff + order - stateIndex;
|
|
|
|
x = scaleValue(*pSignal, -(lpcCoeff_e + 1));
|
|
for (j = 0; j < order; j++) {
|
|
x -= fMultDiv2(state[j], pCoeff[j]);
|
|
}
|
|
x = SATURATE_SHIFT(x, -lpcCoeff_e - 1, DFRACT_BITS);
|
|
|
|
/* Update states */
|
|
stateIndex = ((stateIndex - 1) < 0) ? (order - 1) : (stateIndex - 1);
|
|
state[stateIndex] = x;
|
|
|
|
*pSignal = scaleValue(x, signal_e);
|
|
pSignal += inc;
|
|
}
|
|
|
|
*pStateIndex = stateIndex;
|
|
}
|
|
|
|
/* FIR */
|
|
void CLpc_Analysis(FIXP_DBL *RESTRICT signal, const int signal_size,
|
|
const FIXP_LPC lpcCoeff_m[], const int lpcCoeff_e,
|
|
const int order, FIXP_DBL *RESTRICT filtState,
|
|
int *filtStateIndex) {
|
|
int stateIndex;
|
|
INT i, j, shift = lpcCoeff_e + 1; /* +1, because fMultDiv2 */
|
|
FIXP_DBL tmp;
|
|
|
|
if (order <= 0) {
|
|
return;
|
|
}
|
|
if (filtStateIndex != NULL) {
|
|
stateIndex = *filtStateIndex;
|
|
} else {
|
|
stateIndex = 0;
|
|
}
|
|
|
|
/* keep filter coefficients twice and save memory copy operation in
|
|
modulo state buffer */
|
|
FIXP_LPC coeff[2 * LPC_MAX_ORDER];
|
|
FIXP_LPC *pCoeff;
|
|
FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC));
|
|
FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC));
|
|
|
|
/*
|
|
# Analysis filter, obtain residual.
|
|
for k = 0:BL-1
|
|
err(i-BL+k) = a * inputSignal(i-BL+k:-1:i-BL-M+k);
|
|
endfor
|
|
*/
|
|
|
|
FDK_ASSERT(shift >= 0);
|
|
|
|
for (j = 0; j < signal_size; j++) {
|
|
pCoeff = &coeff[(order - stateIndex)];
|
|
|
|
tmp = signal[j] >> shift;
|
|
for (i = 0; i < order; i++) {
|
|
tmp = fMultAddDiv2(tmp, pCoeff[i], filtState[i]);
|
|
}
|
|
|
|
stateIndex =
|
|
((stateIndex - 1) < 0) ? (stateIndex - 1 + order) : (stateIndex - 1);
|
|
filtState[stateIndex] = signal[j];
|
|
|
|
signal[j] = tmp << shift;
|
|
}
|
|
|
|
if (filtStateIndex != NULL) {
|
|
*filtStateIndex = stateIndex;
|
|
}
|
|
}
|
|
|
|
/* For the LPC_SYNTHESIS_IIR version */
|
|
INT CLpc_ParcorToLpc(const FIXP_LPC_TNS reflCoeff[], FIXP_LPC_TNS LpcCoeff[],
|
|
INT numOfCoeff, FIXP_DBL workBuffer[]) {
|
|
INT i, j;
|
|
INT shiftval,
|
|
par2LpcShiftVal = 6; /* 6 should be enough, bec. max(numOfCoeff) = 20 */
|
|
FIXP_DBL maxVal = (FIXP_DBL)0;
|
|
|
|
workBuffer[0] = FX_LPC_TNS2FX_DBL(reflCoeff[0]) >> par2LpcShiftVal;
|
|
for (i = 1; i < numOfCoeff; i++) {
|
|
for (j = 0; j < i / 2; j++) {
|
|
FIXP_DBL tmp1, tmp2;
|
|
|
|
tmp1 = workBuffer[j];
|
|
tmp2 = workBuffer[i - 1 - j];
|
|
workBuffer[j] += fMult(reflCoeff[i], tmp2);
|
|
workBuffer[i - 1 - j] += fMult(reflCoeff[i], tmp1);
|
|
}
|
|
if (i & 1) {
|
|
workBuffer[j] += fMult(reflCoeff[i], workBuffer[j]);
|
|
}
|
|
|
|
workBuffer[i] = FX_LPC_TNS2FX_DBL(reflCoeff[i]) >> par2LpcShiftVal;
|
|
}
|
|
|
|
/* calculate exponent */
|
|
for (i = 0; i < numOfCoeff; i++) {
|
|
maxVal = fMax(maxVal, fAbs(workBuffer[i]));
|
|
}
|
|
|
|
shiftval = fMin(fNorm(maxVal), par2LpcShiftVal);
|
|
|
|
for (i = 0; i < numOfCoeff; i++) {
|
|
LpcCoeff[i] = FX_DBL2FX_LPC_TNS(workBuffer[i] << shiftval);
|
|
}
|
|
|
|
return (par2LpcShiftVal - shiftval);
|
|
}
|
|
/* Default version */
|
|
INT CLpc_ParcorToLpc(const FIXP_LPC reflCoeff[], FIXP_LPC LpcCoeff[],
|
|
INT numOfCoeff, FIXP_DBL workBuffer[]) {
|
|
INT i, j;
|
|
INT shiftval,
|
|
par2LpcShiftVal = 6; /* 6 should be enough, bec. max(numOfCoeff) = 20 */
|
|
FIXP_DBL maxVal = (FIXP_DBL)0;
|
|
|
|
workBuffer[0] = FX_LPC2FX_DBL(reflCoeff[0]) >> par2LpcShiftVal;
|
|
for (i = 1; i < numOfCoeff; i++) {
|
|
for (j = 0; j < i / 2; j++) {
|
|
FIXP_DBL tmp1, tmp2;
|
|
|
|
tmp1 = workBuffer[j];
|
|
tmp2 = workBuffer[i - 1 - j];
|
|
workBuffer[j] += fMult(reflCoeff[i], tmp2);
|
|
workBuffer[i - 1 - j] += fMult(reflCoeff[i], tmp1);
|
|
}
|
|
if (i & 1) {
|
|
workBuffer[j] += fMult(reflCoeff[i], workBuffer[j]);
|
|
}
|
|
|
|
workBuffer[i] = FX_LPC2FX_DBL(reflCoeff[i]) >> par2LpcShiftVal;
|
|
}
|
|
|
|
/* calculate exponent */
|
|
for (i = 0; i < numOfCoeff; i++) {
|
|
maxVal = fMax(maxVal, fAbs(workBuffer[i]));
|
|
}
|
|
|
|
shiftval = fMin(fNorm(maxVal), par2LpcShiftVal);
|
|
|
|
for (i = 0; i < numOfCoeff; i++) {
|
|
LpcCoeff[i] = FX_DBL2FX_LPC(workBuffer[i] << shiftval);
|
|
}
|
|
|
|
return (par2LpcShiftVal - shiftval);
|
|
}
|
|
|
|
void CLpc_AutoToParcor(FIXP_DBL acorr[], const int acorr_e,
|
|
FIXP_LPC reflCoeff[], const int numOfCoeff,
|
|
FIXP_DBL *pPredictionGain_m, INT *pPredictionGain_e) {
|
|
INT i, j, scale = 0;
|
|
FIXP_DBL parcorWorkBuffer[LPC_MAX_ORDER];
|
|
|
|
FIXP_DBL *workBuffer = parcorWorkBuffer;
|
|
FIXP_DBL autoCorr_0 = acorr[0];
|
|
|
|
FDKmemclear(reflCoeff, numOfCoeff * sizeof(FIXP_LPC));
|
|
|
|
if (autoCorr_0 == FL2FXCONST_DBL(0.0)) {
|
|
if (pPredictionGain_m != NULL) {
|
|
*pPredictionGain_m = FL2FXCONST_DBL(0.5f);
|
|
*pPredictionGain_e = 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
FDKmemcpy(workBuffer, acorr + 1, numOfCoeff * sizeof(FIXP_DBL));
|
|
for (i = 0; i < numOfCoeff; i++) {
|
|
LONG sign = ((LONG)workBuffer[0] >> (DFRACT_BITS - 1));
|
|
FIXP_DBL tmp = (FIXP_DBL)((LONG)workBuffer[0] ^ sign);
|
|
|
|
/* Check preconditions for division function: num<=denum */
|
|
/* For 1st iteration acorr[0] cannot be 0, it is checked before loop */
|
|
/* Due to exor operation with "sign", num(=tmp) is greater/equal 0 */
|
|
if (acorr[0] < tmp) break;
|
|
|
|
/* tmp = div(num, denum, 16) */
|
|
tmp = (FIXP_DBL)((LONG)schur_div(tmp, acorr[0], FRACT_BITS) ^ (~sign));
|
|
|
|
reflCoeff[i] = FX_DBL2FX_LPC(tmp);
|
|
|
|
for (j = numOfCoeff - i - 1; j >= 0; j--) {
|
|
FIXP_DBL accu1 = fMult(tmp, acorr[j]);
|
|
FIXP_DBL accu2 = fMult(tmp, workBuffer[j]);
|
|
workBuffer[j] += accu1;
|
|
acorr[j] += accu2;
|
|
}
|
|
/* Check preconditions for division function: denum (=acorr[0]) > 0 */
|
|
if (acorr[0] == (FIXP_DBL)0) break;
|
|
|
|
workBuffer++;
|
|
}
|
|
|
|
if (pPredictionGain_m != NULL) {
|
|
if (acorr[0] > (FIXP_DBL)0) {
|
|
/* prediction gain = signal power / error (residual) power */
|
|
*pPredictionGain_m = fDivNormSigned(autoCorr_0, acorr[0], &scale);
|
|
*pPredictionGain_e = scale;
|
|
} else {
|
|
*pPredictionGain_m = (FIXP_DBL)0;
|
|
*pPredictionGain_e = 0;
|
|
}
|
|
}
|
|
}
|