1
0
mirror of https://github.com/mstorsjo/fdk-aac.git synced 2025-02-14 10:20:35 +01:00
fdk-aac/libAACenc/src/sf_estim.cpp
Fraunhofer IIS FDK 6cfabd3536 Upgrade to FDKv2
Bug: 71430241
Test: CTS DecoderTest and DecoderTestAacDrc

original-Change-Id: Iaa20f749b8a04d553b20247cfe1a8930ebbabe30

Apply clang-format also on header files.

original-Change-Id: I14de1ef16bbc79ec0283e745f98356a10efeb2e4

Fixes for MPEG-D DRC

original-Change-Id: If1de2d74bbbac84b3f67de3b88b83f6a23b8a15c

Catch unsupported tw_mdct at an early stage

original-Change-Id: Ied9dd00d754162a0e3ca1ae3e6b854315d818afe

Fixing PVC transition frames

original-Change-Id: Ib75725abe39252806c32d71176308f2c03547a4e

Move qmf bands sanity check

original-Change-Id: Iab540c3013c174d9490d2ae100a4576f51d8dbc4

Initialize scaling variable

original-Change-Id: I3c4087101b70e998c71c1689b122b0d7762e0f9e

Add 16 qmf band configuration to getSlotNrgHQ()

original-Change-Id: I49a5d30f703a1b126ff163df9656db2540df21f1

Always apply byte alignment at the end of the AudioMuxElement

original-Change-Id: I42d560287506d65d4c3de8bfe3eb9a4ebeb4efc7

Setup SBR element only if no parse error exists

original-Change-Id: I1915b73704bc80ab882b9173d6bec59cbd073676

Additional array index check in HCR

original-Change-Id: I18cc6e501ea683b5009f1bbee26de8ddd04d8267

Fix fade-in index selection in concealment module

original-Change-Id: Ibf802ed6ed8c05e9257e1f3b6d0ac1162e9b81c1

Enable explicit backward compatible parser for AAC_LD

original-Change-Id: I27e9c678dcb5d40ed760a6d1e06609563d02482d

Skip spatial specific config in explicit backward compatible ASC

original-Change-Id: Iff7cc365561319e886090cedf30533f562ea4d6e

Update flags description in decoder API

original-Change-Id: I9a5b4f8da76bb652f5580cbd3ba9760425c43830

Add QMF domain reset function

original-Change-Id: I4f89a8a2c0277d18103380134e4ed86996e9d8d6

DRC upgrade v2.1.0

original-Change-Id: I5731c0540139dab220094cd978ef42099fc45b74

Fix integer overflow in sqrtFixp_lookup()

original-Change-Id: I429a6f0d19aa2cc957e0f181066f0ca73968c914

Fix integer overflow in invSqrtNorm2()

original-Change-Id: I84de5cbf9fb3adeb611db203fe492fabf4eb6155

Fix integer overflow in GenerateRandomVector()

original-Change-Id: I3118a641008bd9484d479e5b0b1ee2b5d7d44d74

Fix integer overflow in adjustTimeSlot_EldGrid()

original-Change-Id: I29d503c247c5c8282349b79df940416a512fb9d5

Fix integer overflow in FDKsbrEnc_codeEnvelope()

original-Change-Id: I6b34b61ebb9d525b0c651ed08de2befc1f801449

Follow-up on: Fix integer overflow in adjustTimeSlot_EldGrid()

original-Change-Id: I6f8f578cc7089e5eb7c7b93e580b72ca35ad689a

Fix integer overflow in get_pk_v2()

original-Change-Id: I63375bed40d45867f6eeaa72b20b1f33e815938c

Fix integer overflow in Syn_filt_zero()

original-Change-Id: Ie0c02fdfbe03988f9d3b20d10cd9fe4c002d1279

Fix integer overflow in CFac_CalcFacSignal()

original-Change-Id: Id2d767c40066c591b51768e978eb8af3b803f0c5

Fix integer overflow in FDKaacEnc_FDKaacEnc_calcPeNoAH()

original-Change-Id: Idcbd0f4a51ae2550ed106aa6f3d678d1f9724841

Fix integer overflow in sbrDecoder_calculateGainVec()

original-Change-Id: I7081bcbe29c5cede9821b38d93de07c7add2d507

Fix integer overflow in CLpc_SynthesisLattice()

original-Change-Id: I4a95ddc18de150102352d4a1845f06094764c881

Fix integer overflow in Pred_Lt4()

original-Change-Id: I4dbd012b2de7d07c3e70a47b92e3bfae8dbc750a

Fix integer overflow in FDKsbrEnc_InitSbrFastTransientDetector()

original-Change-Id: I788cbec1a4a00f44c2f3a72ad7a4afa219807d04

Fix unsigned integer overflow in FDKaacEnc_WriteBitstream()

original-Change-Id: I68fc75166e7d2cd5cd45b18dbe3d8c2a92f1822a

Fix unsigned integer overflow in FDK_MetadataEnc_Init()

original-Change-Id: Ie8d025f9bcdb2442c704bd196e61065c03c10af4

Fix overflow in pseudo random number generators

original-Change-Id: I3e2551ee01356297ca14e3788436ede80bd5513c

Fix unsigned integer overflow in sbrDecoder_Parse()

original-Change-Id: I3f231b2f437e9c37db4d5b964164686710eee971

Fix unsigned integer overflow in longsub()

original-Change-Id: I73c2bc50415cac26f1f5a29e125bbe75f9180a6e

Fix unsigned integer overflow in CAacDecoder_DecodeFrame()

original-Change-Id: Ifce2db4b1454b46fa5f887e9d383f1cc43b291e4

Fix overflow at CLpdChannelStream_Read()

original-Change-Id: Idb9d822ce3a4272e4794b643644f5434e2d4bf3f

Fix unsigned integer overflow in Hcr_State_BODY_SIGN_ESC__ESC_WORD()

original-Change-Id: I1ccf77c0015684b85534c5eb97162740a870b71c

Fix unsigned integer overflow in UsacConfig_Parse()

original-Change-Id: Ie6d27f84b6ae7eef092ecbff4447941c77864d9f

Fix unsigned integer overflow in aacDecoder_drcParse()

original-Change-Id: I713f28e883eea3d70b6fa56a7b8f8c22bcf66ca0

Fix unsigned integer overflow in aacDecoder_drcReadCompression()

original-Change-Id: Ia34dfeb88c4705c558bce34314f584965cafcf7a

Fix unsigned integer overflow in CDataStreamElement_Read()

original-Change-Id: Iae896cc1d11f0a893d21be6aa90bd3e60a2c25f0

Fix unsigned integer overflow in transportDec_AdjustEndOfAccessUnit()

original-Change-Id: I64cf29a153ee784bb4a16fdc088baabebc0007dc

Fix unsigned integer overflow in transportDec_GetAuBitsRemaining()

original-Change-Id: I975b3420faa9c16a041874ba0db82e92035962e4

Fix unsigned integer overflow in extractExtendedData()

original-Change-Id: I2a59eb09e2053cfb58dfb75fcecfad6b85a80a8f

Fix signed integer overflow in CAacDecoder_ExtPayloadParse()

original-Change-Id: I4ad5ca4e3b83b5d964f1c2f8c5e7b17c477c7929

Fix unsigned integer overflow in CAacDecoder_DecodeFrame()

original-Change-Id: I29a39df77d45c52a0c9c5c83c1ba81f8d0f25090

Follow-up on: Fix integer overflow in CLpc_SynthesisLattice()

original-Change-Id: I8fb194ffc073a3432a380845be71036a272d388f

Fix signed integer overflow in _interpolateDrcGain()

original-Change-Id: I879ec9ab14005069a7c47faf80e8bc6e03d22e60

Fix unsigned integer overflow in FDKreadBits()

original-Change-Id: I1f47a6a8037ff70375aa8844947d5681bb4287ad

Fix unsigned integer overflow in FDKbyteAlign()

original-Change-Id: Id5f3a11a0c9e50fc6f76ed6c572dbd4e9f2af766

Fix unsigned integer overflow in FDK_get32()

original-Change-Id: I9d33b8e97e3d38cbb80629cb859266ca0acdce96

Fix unsigned integer overflow in FDK_pushBack()

original-Change-Id: Ic87f899bc8c6acf7a377a8ca7f3ba74c3a1e1c19

Fix unsigned integer overflow in FDK_pushForward()

original-Change-Id: I3b754382f6776a34be1602e66694ede8e0b8effc

Fix unsigned integer overflow in ReadPsData()

original-Change-Id: I25361664ba8139e32bbbef2ca8c106a606ce9c37

Fix signed integer overflow in E_UTIL_residu()

original-Change-Id: I8c3abd1f437ee869caa8fb5903ce7d3d641b6aad

REVERT: Follow-up on: Integer overflow in CLpc_SynthesisLattice().

original-Change-Id: I3d340099acb0414795c8dfbe6362bc0a8f045f9b

Follow-up on: Fix integer overflow in CLpc_SynthesisLattice()

original-Change-Id: I4aedb8b3a187064e9f4d985175aa55bb99cc7590

Follow-up on: Fix unsigned integer overflow in aacDecoder_drcParse()

original-Change-Id: I2aa2e13916213bf52a67e8b0518e7bf7e57fb37d

Fix integer overflow in acelp

original-Change-Id: Ie6390c136d84055f8b728aefbe4ebef6e029dc77

Fix unsigned integer overflow in aacDecoder_UpdateBitStreamCounters()

original-Change-Id: I391ffd97ddb0b2c184cba76139bfb356a3b4d2e2

Adjust concealment default settings

original-Change-Id: I6a95db935a327c47df348030bcceafcb29f54b21

Saturate estimatedStartPos

original-Change-Id: I27be2085e0ae83ec9501409f65e003f6bcba1ab6

Negative shift exponent in _interpolateDrcGain()

original-Change-Id: I18edb26b26d002aafd5e633d4914960f7a359c29

Negative shift exponent in calculateICC()

original-Change-Id: I3dcd2ae98d2eb70ee0d59750863cbb2a6f4f8aba

Too large shift exponent in FDK_put()

original-Change-Id: Ib7d9aaa434d2d8de4a13b720ca0464b31ca9b671

Too large shift exponent in CalcInvLdData()

original-Change-Id: I43e6e78d4cd12daeb1dcd5d82d1798bdc2550262

Member access within null pointer of type SBR_CHANNEL

original-Change-Id: Idc5e4ea8997810376d2f36bbdf628923b135b097

Member access within null pointer of type CpePersistentData

original-Change-Id: Ib6c91cb0d37882768e5baf63324e429589de0d9d

Member access within null pointer FDKaacEnc_psyMain()

original-Change-Id: I7729b7f4479970531d9dc823abff63ca52e01997

Member access within null pointer FDKaacEnc_GetPnsParam()

original-Change-Id: I9aa3b9f3456ae2e0f7483dbd5b3dde95fc62da39

Member access within null pointer FDKsbrEnc_EnvEncodeFrame()

original-Change-Id: I67936f90ea714e90b3e81bc0dd1472cc713eb23a

Add HCR sanity check

original-Change-Id: I6c1d9732ebcf6af12f50b7641400752f74be39f7

Fix memory issue for HBE edge case with 8:3 SBR

original-Change-Id: I11ea58a61e69fbe8bf75034b640baee3011e63e9

Additional SBR parametrization sanity check for ELD

original-Change-Id: Ie26026fbfe174c2c7b3691f6218b5ce63e322140

Add MPEG-D DRC channel layout check

original-Change-Id: Iea70a74f171b227cce636a9eac4ba662777a2f72

Additional out-of-bounds checks in MPEG-D DRC

original-Change-Id: Ife4a8c3452c6fde8a0a09e941154a39a769777d4

Change-Id: Ic63cb2f628720f54fe9b572b0cb528e2599c624e
2018-04-19 11:21:15 -07:00

1293 lines
48 KiB
C++

/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** AAC encoder library ******************************
Author(s): M. Werner
Description: Scale factor estimation
*******************************************************************************/
#include "sf_estim.h"
#include "aacEnc_rom.h"
#include "quantize.h"
#include "bit_cnt.h"
#ifdef __arm__
#endif
#define UPCOUNT_LIMIT 1
#define AS_PE_FAC_SHIFT 7
#define DIST_FAC_SHIFT 3
#define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)
static const INT MAX_SCF_DELTA = 60;
static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(
3.0f / AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(
1.3219281f / AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
/*
Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel
Description: Calculates the formfactor
sf: scale factor of the mdct spectrum
sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) *
(2^FORM_FAC_SHIFT))
*/
static void FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
FIXP_DBL *RESTRICT sfbFormFactorLdData,
PSY_OUT_CHANNEL *RESTRICT psyOutChan) {
INT j, sfb, sfbGrp;
FIXP_DBL formFactor;
int tmp0 = psyOutChan->sfbCnt;
int tmp1 = psyOutChan->maxSfbPerGroup;
int step = psyOutChan->sfbPerGroup;
for (sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
for (sfb = 0; sfb < tmp1; sfb++) {
formFactor = FL2FXCONST_DBL(0.0f);
/* calc sum of sqrt(spec) */
for (j = psyOutChan->sfbOffsets[sfbGrp + sfb];
j < psyOutChan->sfbOffsets[sfbGrp + sfb + 1]; j++) {
formFactor +=
sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j])) >> FORM_FAC_SHIFT;
}
sfbFormFactorLdData[sfbGrp + sfb] = CalcLdData(formFactor);
}
/* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */
for (; sfb < psyOutChan->sfbPerGroup; sfb++) {
sfbFormFactorLdData[sfbGrp + sfb] = FL2FXCONST_DBL(-1.0f);
}
}
}
/*
Function: FDKaacEnc_CalcFormFactor
Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each
channel
*/
void FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
PSY_OUT_CHANNEL *psyOutChannel[(2)],
const INT nChannels) {
INT j;
for (j = 0; j < nChannels; j++) {
FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
}
}
/*
Function: FDKaacEnc_calcSfbRelevantLines
Description: Calculates sfbNRelevantLines
sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)
*/
static void FDKaacEnc_calcSfbRelevantLines(
const FIXP_DBL *const sfbFormFactorLdData,
const FIXP_DBL *const sfbEnergyLdData,
const FIXP_DBL *const sfbThresholdLdData, const INT *const sfbOffsets,
const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup,
FIXP_DBL *sfbNRelevantLines) {
INT sfbOffs, sfb;
FIXP_DBL sfbWidthLdData;
FIXP_DBL asPeFacLdData =
FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
FIXP_DBL accu;
/* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 *
* (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) *
* 64); */
FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));
for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup) {
for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
/* calc sum of sqrt(spec) */
if ((FIXP_DBL)sfbEnergyLdData[sfbOffs + sfb] >
(FIXP_DBL)sfbThresholdLdData[sfbOffs + sfb]) {
INT sfbWidth =
sfbOffsets[sfbOffs + sfb + 1] - sfbOffsets[sfbOffs + sfb];
/* avgFormFactorLdData =
* sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
/* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] /
* avgFormFactorLdData; */
sfbWidthLdData =
(FIXP_DBL)(sfbWidth << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
sfbWidthLdData = CalcLdData(sfbWidthLdData);
accu = sfbEnergyLdData[sfbOffs + sfb] - sfbWidthLdData - asPeFacLdData;
accu = sfbFormFactorLdData[sfbOffs + sfb] - (accu >> 2);
sfbNRelevantLines[sfbOffs + sfb] = CalcInvLdData(accu) >> 1;
}
}
}
}
/*
Function: FDKaacEnc_countSingleScfBits
Description:
scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft,
INT scfRight) {
FIXP_DBL scfBitsFract;
scfBitsFract = (FIXP_DBL)(FDKaacEnc_bitCountScalefactorDelta(scfLeft - scf) +
FDKaacEnc_bitCountScalefactorDelta(scf - scfRight));
scfBitsFract = scfBitsFract << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT));
return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
}
/*
Function: FDKaacEnc_calcSingleSpecPe
specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart,
FIXP_DBL nLines) {
FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);
FIXP_DBL ldRatio;
FIXP_DBL scfFract;
scfFract = (FIXP_DBL)(scf << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f), scfFract);
if (ldRatio >= PE_C1) {
specPe = fMult(FL2FXCONST_DBL(0.7f), fMult(nLines, ldRatio));
} else {
specPe = fMult(FL2FXCONST_DBL(0.7f),
fMult(nLines, (PE_C2 + fMult(PE_C3, ldRatio))));
}
return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
}
/*
Function: FDKaacEnc_countScfBitsDiff
scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld, INT *scfNew, INT sfbCnt,
INT startSfb, INT stopSfb) {
FIXP_DBL scfBitsFract;
INT scfBitsDiff = 0;
INT sfb = 0, sfbLast;
INT sfbPrev, sfbNext;
/* search for first relevant sfb */
sfbLast = startSfb;
while ((sfbLast < stopSfb) && (scfOld[sfbLast] == FDK_INT_MIN)) sfbLast++;
/* search for previous relevant sfb and count diff */
sfbPrev = startSfb - 1;
while ((sfbPrev >= 0) && (scfOld[sfbPrev] == FDK_INT_MIN)) sfbPrev--;
if (sfbPrev >= 0)
scfBitsDiff +=
FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev] - scfNew[sfbLast]) -
FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev] - scfOld[sfbLast]);
/* now loop through all sfbs and count diffs of relevant sfbs */
for (sfb = sfbLast + 1; sfb < stopSfb; sfb++) {
if (scfOld[sfb] != FDK_INT_MIN) {
scfBitsDiff +=
FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfb]) -
FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfb]);
sfbLast = sfb;
}
}
/* search for next relevant sfb and count diff */
sfbNext = stopSfb;
while ((sfbNext < sfbCnt) && (scfOld[sfbNext] == FDK_INT_MIN)) sfbNext++;
if (sfbNext < sfbCnt)
scfBitsDiff +=
FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfbNext]) -
FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfbNext]);
scfBitsFract =
(FIXP_DBL)(scfBitsDiff << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT)));
return scfBitsFract;
}
/*
Function: FDKaacEnc_calcSpecPeDiff
specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
static FIXP_DBL FDKaacEnc_calcSpecPeDiff(
PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, INT *scfOld,
INT *scfNew, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
FIXP_DBL *sfbNRelevantLines, INT startSfb, INT stopSfb) {
FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);
FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);
INT sfb;
/* loop through all sfbs and count pe difference */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfOld[sfb] != FDK_INT_MIN) {
FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;
/* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f /
* sfbFormFactor[sfb]) * LOG2_1; */
/* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
* log2 */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)
sfbConstPePart[sfb] =
((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] -
FL2FXCONST_DBL(0.09375f)) >>
1) +
FL2FXCONST_DBL(0.02152255861f);
scfFract = (FIXP_DBL)(scfOld[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
ldRatioOld =
sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
scfFract = (FIXP_DBL)(scfNew[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
ldRatioNew =
sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
if (ldRatioOld >= PE_C1)
pOld = ldRatioOld;
else
pOld = PE_C2 + fMult(PE_C3, ldRatioOld);
if (ldRatioNew >= PE_C1)
pNew = ldRatioNew;
else
pNew = PE_C2 + fMult(PE_C3, ldRatioNew);
specPeDiff += fMult(FL2FXCONST_DBL(0.7f),
fMult(sfbNRelevantLines[sfb], (pNew - pOld)));
}
}
return specPeDiff;
}
/*
Function: FDKaacEnc_improveScf
Description: Calculate the distortion by quantization and inverse quantization
of the spectrum with various scalefactors. The scalefactor which provides the
best results will be used.
*/
static INT FDKaacEnc_improveScf(const FIXP_DBL *spec, SHORT *quantSpec,
SHORT *quantSpecTmp, INT sfbWidth,
FIXP_DBL threshLdData, INT scf, INT minScf,
FIXP_DBL *distLdData, INT *minScfCalculated,
INT dZoneQuantEnable) {
FIXP_DBL sfbDistLdData;
INT scfBest = scf;
INT k;
FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
/* calc real distortion */
sfbDistLdData =
FDKaacEnc_calcSfbDist(spec, quantSpec, sfbWidth, scf, dZoneQuantEnable);
*minScfCalculated = scf;
/* nmr > 1.25 -> try to improve nmr */
if (sfbDistLdData > (threshLdData - distFactorLdData)) {
INT scfEstimated = scf;
FIXP_DBL sfbDistBestLdData = sfbDistLdData;
INT cnt;
/* improve by bigger scf ? */
cnt = 0;
while ((sfbDistLdData > (threshLdData - distFactorLdData)) &&
(cnt++ < UPCOUNT_LIMIT)) {
scf++;
sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
dZoneQuantEnable);
if (sfbDistLdData < sfbDistBestLdData) {
scfBest = scf;
sfbDistBestLdData = sfbDistLdData;
for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
}
/* improve by smaller scf ? */
cnt = 0;
scf = scfEstimated;
sfbDistLdData = sfbDistBestLdData;
while ((sfbDistLdData > (threshLdData - distFactorLdData)) && (cnt++ < 1) &&
(scf > minScf)) {
scf--;
sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
dZoneQuantEnable);
if (sfbDistLdData < sfbDistBestLdData) {
scfBest = scf;
sfbDistBestLdData = sfbDistLdData;
for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
*minScfCalculated = scf;
}
*distLdData = sfbDistBestLdData;
} else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
FIXP_DBL sfbDistBestLdData = sfbDistLdData;
FIXP_DBL sfbDistAllowedLdData =
fixMin(sfbDistLdData - distFactorLdData, threshLdData);
int cnt;
for (cnt = 0; cnt < UPCOUNT_LIMIT; cnt++) {
scf++;
sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
dZoneQuantEnable);
if (sfbDistLdData < sfbDistAllowedLdData) {
*minScfCalculated = scfBest + 1;
scfBest = scf;
sfbDistBestLdData = sfbDistLdData;
for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
}
*distLdData = sfbDistBestLdData;
}
/* return best scalefactor */
return scfBest;
}
/*
Function: FDKaacEnc_assimilateSingleScf
*/
static void FDKaacEnc_assimilateSingleScf(
const PSY_OUT_CHANNEL *psyOutChan, const QC_OUT_CHANNEL *qcOutChannel,
SHORT *quantSpec, SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf,
const INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart,
const FIXP_DBL *sfbFormFactorLdData, const FIXP_DBL *sfbNRelevantLines,
INT *minScfCalculated, INT restartOnSuccess) {
INT sfbLast, sfbAct, sfbNext;
INT scfAct, *scfLast, *scfNext, scfMin, scfMax;
INT sfbWidth, sfbOffs;
FIXP_DBL enLdData;
FIXP_DBL sfbPeOld, sfbPeNew;
FIXP_DBL sfbDistNew;
INT i, k;
INT success = 0;
FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
FIXP_DBL deltaPeNew, deltaPeTmp;
INT prevScfLast[MAX_GROUPED_SFB], prevScfNext[MAX_GROUPED_SFB];
FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];
INT updateMinScfCalculated;
for (i = 0; i < psyOutChan->sfbCnt; i++) {
prevScfLast[i] = FDK_INT_MAX;
prevScfNext[i] = FDK_INT_MAX;
deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;
}
sfbLast = -1;
sfbAct = -1;
sfbNext = -1;
scfLast = 0;
scfNext = 0;
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MAX;
do {
/* search for new relevant sfb */
sfbNext++;
while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))
sfbNext++;
if ((sfbLast >= 0) && (sfbAct >= 0) && (sfbNext < psyOutChan->sfbCnt)) {
/* relevant scfs to the left and to the right */
scfAct = scf[sfbAct];
scfLast = scf + sfbLast;
scfNext = scf + sfbNext;
scfMin = fixMin(*scfLast, *scfNext);
scfMax = fixMax(*scfLast, *scfNext);
} else if ((sfbLast == -1) && (sfbAct >= 0) &&
(sfbNext < psyOutChan->sfbCnt)) {
/* first relevant scf */
scfAct = scf[sfbAct];
scfLast = &scfAct;
scfNext = scf + sfbNext;
scfMin = *scfNext;
scfMax = *scfNext;
} else if ((sfbLast >= 0) && (sfbAct >= 0) &&
(sfbNext == psyOutChan->sfbCnt)) {
/* last relevant scf */
scfAct = scf[sfbAct];
scfLast = scf + sfbLast;
scfNext = &scfAct;
scfMin = *scfLast;
scfMax = *scfLast;
}
if (sfbAct >= 0) scfMin = fixMax(scfMin, minScf[sfbAct]);
if ((sfbAct >= 0) && (sfbLast >= 0 || sfbNext < psyOutChan->sfbCnt) &&
(scfAct > scfMin) && (scfAct <= scfMin + MAX_SCF_DELTA) &&
(scfAct >= scfMax - MAX_SCF_DELTA) &&
(scfAct <=
fixMin(scfMin, fixMin(*scfLast, *scfNext)) + MAX_SCF_DELTA) &&
(*scfLast != prevScfLast[sfbAct] || *scfNext != prevScfNext[sfbAct] ||
deltaPe < deltaPeLast[sfbAct])) {
/* bigger than neighbouring scf found, try to use smaller scf */
success = 0;
sfbWidth =
psyOutChan->sfbOffsets[sfbAct + 1] - psyOutChan->sfbOffsets[sfbAct];
sfbOffs = psyOutChan->sfbOffsets[sfbAct];
/* estimate required bits for actual scf */
enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];
/* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) *
* LOG2_1; */
/* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
* log2 */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) {
sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] -
FL2FXCONST_DBL(0.09375f)) >>
1) +
FL2FXCONST_DBL(0.02152255861f);
}
sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
sfbNRelevantLines[sfbAct]) +
FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
deltaPeNew = deltaPe;
updateMinScfCalculated = 1;
do {
/* estimate required bits for smaller scf */
scfAct--;
/* check only if the same check was not done before */
if (scfAct < minScfCalculated[sfbAct] &&
scfAct >= scfMax - MAX_SCF_DELTA) {
/* estimate required bits for new scf */
sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
sfbNRelevantLines[sfbAct]) +
FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
/* use new scf if no increase in pe and
quantization error is smaller */
deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld;
/* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) {
/* distortion of new scf */
sfbDistNew = FDKaacEnc_calcSfbDist(
qcOutChannel->mdctSpectrum + sfbOffs, quantSpecTmp + sfbOffs,
sfbWidth, scfAct, dZoneQuantEnable);
if (sfbDistNew < sfbDist[sfbAct]) {
/* success, replace scf by new one */
scf[sfbAct] = scfAct;
sfbDist[sfbAct] = sfbDistNew;
for (k = 0; k < sfbWidth; k++)
quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
deltaPeNew = deltaPeTmp;
success = 1;
}
/* mark as already checked */
if (updateMinScfCalculated) minScfCalculated[sfbAct] = scfAct;
} else {
/* from this scf value on not all new values have been checked */
updateMinScfCalculated = 0;
}
}
} while (scfAct > scfMin);
deltaPe = deltaPeNew;
/* save parameters to avoid multiple computations of the same sfb */
prevScfLast[sfbAct] = *scfLast;
prevScfNext[sfbAct] = *scfNext;
deltaPeLast[sfbAct] = deltaPe;
}
if (success && restartOnSuccess) {
/* start again at first sfb */
sfbLast = -1;
sfbAct = -1;
sfbNext = -1;
scfLast = 0;
scfNext = 0;
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MAX;
success = 0;
} else {
/* shift sfbs for next band */
sfbLast = sfbAct;
sfbAct = sfbNext;
}
} while (sfbNext < psyOutChan->sfbCnt);
}
/*
Function: FDKaacEnc_assimilateMultipleScf
*/
static void FDKaacEnc_assimilateMultipleScf(
PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
FIXP_DBL *sfbNRelevantLines) {
INT sfb, startSfb, stopSfb;
INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;
INT possibleRegionFound;
INT sfbWidth, sfbOffs, i, k;
FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum;
INT deltaScfBits;
FIXP_DBL deltaSpecPe;
FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
FIXP_DBL deltaPeNew;
INT sfbCnt = psyOutChan->sfbCnt;
/* calc min and max scalfactors */
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MIN;
for (sfb = 0; sfb < sfbCnt; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scfMin = fixMin(scfMin, scf[sfb]);
scfMax = fixMax(scfMax, scf[sfb]);
}
}
if (scfMax != FDK_INT_MIN && scfMax <= scfMin + MAX_SCF_DELTA) {
scfAct = scfMax;
do {
/* try smaller scf */
scfAct--;
for (i = 0; i < MAX_GROUPED_SFB; i++) scfTmp[i] = scf[i];
stopSfb = 0;
do {
/* search for region where all scfs are bigger than scfAct */
sfb = stopSfb;
while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] <= scfAct))
sfb++;
startSfb = sfb;
sfb++;
while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] > scfAct))
sfb++;
stopSfb = sfb;
/* check if in all sfb of a valid region scfAct >= minScf[sfb] */
possibleRegionFound = 0;
if (startSfb < sfbCnt) {
possibleRegionFound = 1;
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN)
if (scfAct < minScf[sfb]) {
possibleRegionFound = 0;
break;
}
}
}
if (possibleRegionFound) { /* region found */
/* replace scfs in region by scfAct */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfAct;
}
/* estimate change in bit demand for new scfs */
deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
startSfb, stopSfb);
deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
/* new bit demand small enough ? */
/* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) {
/* quantize and calc sum of new distortion */
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
psyOutChan->sfbOffsets[sfb];
sfbOffs = psyOutChan->sfbOffsets[sfb];
sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
qcOutChannel->mdctSpectrum + sfbOffs,
quantSpecTmp + sfbOffs, sfbWidth, scfAct, dZoneQuantEnable);
if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
/* no improvement, skip further dist. calculations */
distNewSum = distOldSum << 1;
break;
}
distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
}
}
/* distortion smaller ? -> use new scalefactors */
if (distNewSum < distOldSum) {
deltaPe = deltaPeNew;
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
psyOutChan->sfbOffsets[sfb];
sfbOffs = psyOutChan->sfbOffsets[sfb];
scf[sfb] = scfAct;
sfbDist[sfb] = sfbDistNew[sfb];
for (k = 0; k < sfbWidth; k++)
quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
}
}
}
}
}
} while (stopSfb <= sfbCnt);
} while (scfAct > scfMin);
}
}
/*
Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2
*/
static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
FIXP_DBL *sfbNRelevantLines) {
INT sfb, startSfb, stopSfb;
INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;
INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;
INT scfMin, scfMax;
INT *sfbOffs = psyOutChan->sfbOffsets;
FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB];
FIXP_DBL distOldSum, distNewSum;
INT deltaScfBits;
FIXP_DBL deltaSpecPe;
FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);
INT sfbCnt = psyOutChan->sfbCnt;
INT bSuccess, bCheckScf;
INT i, k;
/* calc min and max scalfactors */
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MIN;
for (sfb = 0; sfb < sfbCnt; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scfMin = fixMin(scfMin, scf[sfb]);
scfMax = fixMax(scfMax, scf[sfb]);
}
}
stopSfb = 0;
scfAct = FDK_INT_MIN;
do {
/* search for region with same scf values scfAct */
scfPrev = scfAct;
sfb = stopSfb;
while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN)) sfb++;
startSfb = sfb;
scfAct = scf[startSfb];
sfb++;
while (sfb < sfbCnt &&
((scf[sfb] == FDK_INT_MIN) || (scf[sfb] == scf[startSfb])))
sfb++;
stopSfb = sfb;
if (stopSfb < sfbCnt)
scfNext = scf[stopSfb];
else
scfNext = scfAct;
if (scfPrev == FDK_INT_MIN) scfPrev = scfAct;
scfPrevNextMax = fixMax(scfPrev, scfNext);
scfPrevNextMin = fixMin(scfPrev, scfNext);
/* try to reduce bits by checking scf values in the range
scf[startSfb]...scfHi */
scfHi = fixMax(scfPrevNextMax, scfAct);
/* try to find a better solution by reducing the scf difference to
the nearest possible lower scf */
if (scfPrevNextMax >= scfAct)
scfLo = fixMin(scfAct, scfPrevNextMin);
else
scfLo = scfPrevNextMax;
if (startSfb < sfbCnt &&
scfHi - scfLo <= MAX_SCF_DELTA) { /* region found */
/* 1. try to save bits by coarser quantization */
if (scfHi > scf[startSfb]) {
/* calculate the allowed distortion */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
/* sfbDistMax[sfb] =
* (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f);
*/
/* sfbDistMax[sfb] =
* fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f));
*/
/* -0.15571537944 = ld64(1.e-3f)*/
sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f / 3.0f),
qcOutChannel->sfbThresholdLdData[sfb]) +
fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]) +
fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]);
sfbDistMax[sfb] =
fixMax(sfbDistMax[sfb], qcOutChannel->sfbEnergyLdData[sfb] -
FL2FXCONST_DBL(0.15571537944));
sfbDistMax[sfb] =
fixMin(sfbDistMax[sfb], qcOutChannel->sfbThresholdLdData[sfb]);
}
}
/* loop over all possible scf values for this region */
bCheckScf = 1;
for (scfNew = scf[startSfb] + 1; scfNew <= scfHi; scfNew++) {
for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
/* replace scfs in region by scfNew */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
}
/* estimate change in bit demand for new scfs */
deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
startSfb, stopSfb);
deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
/* new bit demand small enough ? */
if (deltaPeNew < FL2FXCONST_DBL(0.0f)) {
bSuccess = 1;
/* quantize and calc sum of new distortion */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
qcOutChannel->mdctSpectrum + sfbOffs[sfb],
quantSpecTmp + sfbOffs[sfb],
sfbOffs[sfb + 1] - sfbOffs[sfb], scfNew, dZoneQuantEnable);
if (sfbDistNew[sfb] > sfbDistMax[sfb]) {
/* no improvement, skip further dist. calculations */
bSuccess = 0;
if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) {
/* if whole sfb is already quantized to 0, further
checks with even coarser quant. are useless*/
bCheckScf = 0;
}
break;
}
}
}
if (bCheckScf == 0) /* further calculations useless ? */
break;
/* distortion small enough ? -> use new scalefactors */
if (bSuccess) {
deltaPe = deltaPeNew;
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
quantSpec[sfbOffs[sfb] + k] =
quantSpecTmp[sfbOffs[sfb] + k];
}
}
}
}
}
}
/* 2. only if coarser quantization was not successful, try to find
a better solution by finer quantization and reducing bits for
scalefactor coding */
if (scfAct == scf[startSfb] && scfLo < scfAct &&
scfMax - scfMin <= MAX_SCF_DELTA) {
int bminScfViolation = 0;
for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
scfNew = scfLo;
/* replace scfs in region by scfNew and
check if in all sfb scfNew >= minScf[sfb] */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
scfTmp[sfb] = scfNew;
if (scfNew < minScf[sfb]) bminScfViolation = 1;
}
}
if (!bminScfViolation) {
/* estimate change in bit demand for new scfs */
deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
startSfb, stopSfb);
deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
}
/* new bit demand small enough ? */
if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) {
/* quantize and calc sum of new distortion */
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
qcOutChannel->mdctSpectrum + sfbOffs[sfb],
quantSpecTmp + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
scfNew, dZoneQuantEnable);
if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
/* no improvement, skip further dist. calculations */
distNewSum = distOldSum << 1;
break;
}
distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
}
}
/* distortion smaller ? -> use new scalefactors */
if (distNewSum < fMult(FL2FXCONST_DBL(0.8f), distOldSum)) {
deltaPe = deltaPeNew;
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
quantSpec[sfbOffs[sfb] + k] = quantSpecTmp[sfbOffs[sfb] + k];
}
}
}
}
}
/* 3. try to find a better solution (save bits) by only reducing the
scalefactor without new quantization */
if (scfMax - scfMin <=
MAX_SCF_DELTA - 3) { /* 3 bec. scf is reduced 3 times,
see for loop below */
for (k = 0; k < sfbCnt; k++) scfTmp[k] = scf[k];
for (i = 0; i < 3; i++) {
scfNew = scfTmp[startSfb] - 1;
/* replace scfs in region by scfNew */
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
}
/* estimate change in bit demand for new scfs */
deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;
/* new bit demand small enough ? */
if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) {
bSuccess = 1;
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
FIXP_DBL sfbEnQ;
/* calc the energy and distortion of the quantized spectrum for
a smaller scf */
FDKaacEnc_calcSfbQuantEnergyAndDist(
qcOutChannel->mdctSpectrum + sfbOffs[sfb],
quantSpec + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
scfNew, &sfbEnQ, &sfbDistNew[sfb]);
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
/* 0.00259488556167 = ld64(1.122f) */
/* -0.00778722686652 = ld64(0.7079f) */
if ((sfbDistNew[sfb] >
(sfbDist[sfb] + FL2FXCONST_DBL(0.00259488556167f))) ||
(sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] -
FL2FXCONST_DBL(0.00778722686652f)))) {
bSuccess = 0;
break;
}
}
}
/* distortion smaller ? -> use new scalefactors */
if (distNewSum < distOldSum && bSuccess) {
deltaPe = deltaPeNew;
for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
}
}
}
}
}
}
}
} while (stopSfb <= sfbCnt);
}
static void FDKaacEnc_EstimateScaleFactorsChannel(
QC_OUT_CHANNEL *qcOutChannel, PSY_OUT_CHANNEL *psyOutChannel,
INT *RESTRICT scf, INT *RESTRICT globalGain,
FIXP_DBL *RESTRICT sfbFormFactorLdData, const INT invQuant,
SHORT *RESTRICT quantSpec, const INT dZoneQuantEnable) {
INT i, j, sfb, sfbOffs;
INT scfInt;
INT maxSf;
INT minSf;
FIXP_DBL threshLdData;
FIXP_DBL energyLdData;
FIXP_DBL energyPartLdData;
FIXP_DBL thresholdPartLdData;
FIXP_DBL scfFract;
FIXP_DBL maxSpec;
INT minScfCalculated[MAX_GROUPED_SFB];
FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];
C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024))
INT minSfMaxQuant[MAX_GROUPED_SFB];
FIXP_DBL threshConstLdData =
FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
FIXP_DBL convConst = FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
FIXP_DBL c1Const =
FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
if (invQuant > 0) {
FDKmemclear(quantSpec, (1024) * sizeof(SHORT));
}
/* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */
for (i = 0; i < psyOutChannel->sfbCnt; i++) {
scf[i] = FDK_INT_MIN;
}
for (i = 0; i < MAX_GROUPED_SFB; i++) {
minSfMaxQuant[i] = FDK_INT_MIN;
}
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs + sfb];
energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs + sfb];
sfbDistLdData[sfbOffs + sfb] = energyLdData;
if (energyLdData > threshLdData) {
FIXP_DBL tmp;
/* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
energyPartLdData =
sfbFormFactorLdData[sfbOffs + sfb] + FL2FXCONST_DBL(0.09375f);
/* influence of allowed distortion */
/* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */
thresholdPartLdData = threshConstLdData + threshLdData;
/* scf calc */
/* scfFloat = 8.8585f * (thresholdPart - energyPart); */
scfFract = thresholdPartLdData - energyPartLdData;
/* conversion from log2 to log10 */
scfFract = fMult(convConst, scfFract);
/* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */
scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f), scfFract >> 3);
/* integer scalefactor */
/* scfInt = (int)floor(scfFloat); */
scfInt =
(INT)(scfFract >>
((DFRACT_BITS - 1) - 3 -
LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
/* maximum of spectrum */
maxSpec = FL2FXCONST_DBL(0.0f);
/* Unroll by 4, allow dual memory access */
DWORD_ALIGNED(qcOutChannel->mdctSpectrum);
for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j += 4) {
maxSpec = fMax(maxSpec,
fMax(fMax(fAbs(qcOutChannel->mdctSpectrum[j + 0]),
fAbs(qcOutChannel->mdctSpectrum[j + 1])),
fMax(fAbs(qcOutChannel->mdctSpectrum[j + 2]),
fAbs(qcOutChannel->mdctSpectrum[j + 3]))));
}
/* lower scf limit to avoid quantized values bigger than MAX_QUANT */
/* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */
/* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */
/* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 +
* log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
// minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec))
// >> ((DFRACT_BITS-1)-8))) + 1;
tmp = CalcLdData(maxSpec);
if (c1Const > FL2FXCONST_DBL(-1.f) - tmp) {
minSfMaxQuant[sfbOffs + sfb] =
((INT)((c1Const + tmp) >> ((DFRACT_BITS - 1) - 8))) + 1;
} else {
minSfMaxQuant[sfbOffs + sfb] =
((INT)(FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS - 1) - 8))) + 1;
}
scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs + sfb]);
/* find better scalefactor with analysis by synthesis */
if (invQuant > 0) {
scfInt = FDKaacEnc_improveScf(
qcOutChannel->mdctSpectrum +
psyOutChannel->sfbOffsets[sfbOffs + sfb],
quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
quantSpecTmp + psyOutChannel->sfbOffsets[sfbOffs + sfb],
psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
psyOutChannel->sfbOffsets[sfbOffs + sfb],
threshLdData, scfInt, minSfMaxQuant[sfbOffs + sfb],
&sfbDistLdData[sfbOffs + sfb], &minScfCalculated[sfbOffs + sfb],
dZoneQuantEnable);
}
scf[sfbOffs + sfb] = scfInt;
}
}
}
if (invQuant > 0) {
/* try to decrease scf differences */
FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];
FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];
for (i = 0; i < psyOutChannel->sfbCnt; i++)
sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;
FDKaacEnc_calcSfbRelevantLines(
sfbFormFactorLdData, qcOutChannel->sfbEnergyLdData,
qcOutChannel->sfbThresholdLdData, psyOutChannel->sfbOffsets,
psyOutChannel->sfbCnt, psyOutChannel->sfbPerGroup,
psyOutChannel->maxSfbPerGroup, sfbNRelevantLines);
FDKaacEnc_assimilateSingleScf(
psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, dZoneQuantEnable,
scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData,
sfbNRelevantLines, minScfCalculated, 1);
if (invQuant > 1) {
FDKaacEnc_assimilateMultipleScf(
psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
sfbFormFactorLdData, sfbNRelevantLines);
FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
sfbFormFactorLdData, sfbNRelevantLines);
}
}
/* get min scalefac */
minSf = FDK_INT_MAX;
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
if (scf[sfbOffs + sfb] != FDK_INT_MIN)
minSf = fixMin(minSf, scf[sfbOffs + sfb]);
}
}
/* limit scf delta */
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
if ((scf[sfbOffs + sfb] != FDK_INT_MIN) &&
(minSf + MAX_SCF_DELTA) < scf[sfbOffs + sfb]) {
scf[sfbOffs + sfb] = minSf + MAX_SCF_DELTA;
if (invQuant > 0) { /* changed bands need to be quantized again */
sfbDistLdData[sfbOffs + sfb] = FDKaacEnc_calcSfbDist(
qcOutChannel->mdctSpectrum +
psyOutChannel->sfbOffsets[sfbOffs + sfb],
quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
psyOutChannel->sfbOffsets[sfbOffs + sfb],
scf[sfbOffs + sfb], dZoneQuantEnable);
}
}
}
}
/* get max scalefac for global gain */
maxSf = FDK_INT_MIN;
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
maxSf = fixMax(maxSf, scf[sfbOffs + sfb]);
}
}
/* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */
if (maxSf > FDK_INT_MIN) {
*globalGain = maxSf;
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
if (scf[sfbOffs + sfb] == FDK_INT_MIN) {
scf[sfbOffs + sfb] = 0;
/* set band explicitely to zero */
for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
}
} else {
scf[sfbOffs + sfb] = maxSf - scf[sfbOffs + sfb];
}
}
}
} else {
*globalGain = 0;
/* set spectrum explicitely to zero */
for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
scf[sfbOffs + sfb] = 0;
/* set band explicitely to zero */
for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
}
}
}
}
/* free quantSpecTmp from scratch */
C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024))
}
void FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
QC_OUT_CHANNEL *qcOutChannel[],
const INT invQuant,
const INT dZoneQuantEnable,
const INT nChannels) {
int ch;
for (ch = 0; ch < nChannels; ch++) {
FDKaacEnc_EstimateScaleFactorsChannel(
qcOutChannel[ch], psyOutChannel[ch], qcOutChannel[ch]->scf,
&qcOutChannel[ch]->globalGain, qcOutChannel[ch]->sfbFormFactorLdData,
invQuant, qcOutChannel[ch]->quantSpec, dZoneQuantEnable);
}
}