mirror of
https://github.com/mstorsjo/fdk-aac.git
synced 2025-02-27 16:07:37 +01:00
Bug: 145669510 Test: atest DecoderTestXheAac ; atest DecoderTestAacDrc Change-Id: Ib69a4f12405026d3165193f0192eb25eaed7e797
721 lines
22 KiB
C++
721 lines
22 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/******************* Library for basic calculation routines ********************
|
|
|
|
Author(s):
|
|
|
|
Description: Scaling operations
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "common_fix.h"
|
|
|
|
#include "genericStds.h"
|
|
|
|
/**************************************************
|
|
* Inline definitions
|
|
**************************************************/
|
|
|
|
#include "scale.h"
|
|
|
|
#if defined(__mips__)
|
|
#include "mips/scale_mips.cpp"
|
|
|
|
#elif defined(__arm__)
|
|
#include "arm/scale_arm.cpp"
|
|
|
|
#endif
|
|
|
|
#ifndef FUNCTION_scaleValues_SGL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param len must be larger than 4
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValues_SGL
|
|
void scaleValues(FIXP_SGL *vector, /*!< Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) return;
|
|
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)(FRACT_BITS - 1));
|
|
for (i = len & 3; i--;) {
|
|
*(vector++) <<= scalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)FRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(vector++) >>= negScalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_scaleValues_DBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param len must be larger than 4
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValues_DBL
|
|
SCALE_INLINE
|
|
void scaleValues(FIXP_DBL *vector, /*!< Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) return;
|
|
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(vector++) <<= scalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
*(vector++) <<= scalefactor;
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(vector++) >>= negScalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
*(vector++) >>= negScalefactor;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_scaleValuesSaturate_DBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param vector source/destination buffer
|
|
* \param len length of vector
|
|
* \param scalefactor amount of shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesSaturate_DBL
|
|
SCALE_INLINE
|
|
void scaleValuesSaturate(FIXP_DBL *vector, /*!< Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) return;
|
|
|
|
scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
|
|
(INT) - (DFRACT_BITS - 1));
|
|
|
|
for (i = 0; i < len; i++) {
|
|
vector[i] = scaleValueSaturate(vector[i], scalefactor);
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesSaturate_DBL */
|
|
|
|
#ifndef FUNCTION_scaleValuesSaturate_DBL_DBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param dst destination buffer
|
|
* \param src source buffer
|
|
* \param len length of vector
|
|
* \param scalefactor amount of shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesSaturate_DBL_DBL
|
|
SCALE_INLINE
|
|
void scaleValuesSaturate(FIXP_DBL *dst, /*!< Output */
|
|
const FIXP_DBL *src, /*!< Input */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) {
|
|
FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
|
|
return;
|
|
}
|
|
|
|
scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
|
|
(INT) - (DFRACT_BITS - 1));
|
|
|
|
for (i = 0; i < len; i++) {
|
|
dst[i] = scaleValueSaturate(src[i], scalefactor);
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesSaturate_DBL_DBL */
|
|
|
|
#ifndef FUNCTION_scaleValuesSaturate_SGL_DBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param dst destination buffer (FIXP_SGL)
|
|
* \param src source buffer (FIXP_DBL)
|
|
* \param len length of vector
|
|
* \param scalefactor amount of shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesSaturate_SGL_DBL
|
|
SCALE_INLINE
|
|
void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */
|
|
const FIXP_DBL *src, /*!< Input */
|
|
INT len, /*!< Length */
|
|
INT scalefactor) /*!< Scalefactor */
|
|
{
|
|
INT i;
|
|
scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
|
|
(INT) - (DFRACT_BITS - 1));
|
|
|
|
for (i = 0; i < len; i++) {
|
|
dst[i] = FX_DBL2FX_SGL(fAddSaturate(scaleValueSaturate(src[i], scalefactor),
|
|
(FIXP_DBL)0x8000));
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesSaturate_SGL_DBL */
|
|
|
|
#ifndef FUNCTION_scaleValuesSaturate_SGL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param vector source/destination buffer
|
|
* \param len length of vector
|
|
* \param scalefactor amount of shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesSaturate_SGL
|
|
SCALE_INLINE
|
|
void scaleValuesSaturate(FIXP_SGL *vector, /*!< Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) return;
|
|
|
|
scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
|
|
(INT) - (DFRACT_BITS - 1));
|
|
|
|
for (i = 0; i < len; i++) {
|
|
vector[i] = FX_DBL2FX_SGL(
|
|
scaleValueSaturate(FX_SGL2FX_DBL(vector[i]), scalefactor));
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesSaturate_SGL */
|
|
|
|
#ifndef FUNCTION_scaleValuesSaturate_SGL_SGL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param dst destination buffer
|
|
* \param src source buffer
|
|
* \param len length of vector
|
|
* \param scalefactor amount of shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesSaturate_SGL_SGL
|
|
SCALE_INLINE
|
|
void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */
|
|
const FIXP_SGL *src, /*!< Input */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) {
|
|
FDKmemmove(dst, src, len * sizeof(FIXP_SGL));
|
|
return;
|
|
}
|
|
|
|
scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
|
|
(INT) - (DFRACT_BITS - 1));
|
|
|
|
for (i = 0; i < len; i++) {
|
|
dst[i] =
|
|
FX_DBL2FX_SGL(scaleValueSaturate(FX_SGL2FX_DBL(src[i]), scalefactor));
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesSaturate_SGL_SGL */
|
|
|
|
#ifndef FUNCTION_scaleValues_DBLDBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
|
|
* and place result into dst
|
|
* \param dst detination buffer
|
|
* \param src source buffer
|
|
* \param len must be larger than 4
|
|
* \param scalefactor amount of left shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValues_DBLDBL
|
|
SCALE_INLINE
|
|
void scaleValues(FIXP_DBL *dst, /*!< dst Vector */
|
|
const FIXP_DBL *src, /*!< src Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) {
|
|
if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
|
|
} else {
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = *(src++) << scalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if (SAMPLE_BITS == 16)
|
|
#ifndef FUNCTION_scaleValues_PCMDBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
|
|
* and place result into dst
|
|
* \param dst detination buffer
|
|
* \param src source buffer
|
|
* \param len must be larger than 4
|
|
* \param scalefactor amount of left shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValues_PCMDBL
|
|
SCALE_INLINE
|
|
void scaleValues(FIXP_PCM *dst, /*!< dst Vector */
|
|
const FIXP_DBL *src, /*!< src Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
scalefactor -= DFRACT_BITS - SAMPLE_BITS;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
{
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
|
|
*(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* (SAMPLE_BITS == 16) */
|
|
|
|
#ifndef FUNCTION_scaleValues_SGLSGL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector src by \f$ 2^{scalefactor} \f$
|
|
* and place result into dst
|
|
* \param dst detination buffer
|
|
* \param src source buffer
|
|
* \param len must be larger than 4
|
|
* \param scalefactor amount of left shifts to be applied
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValues_SGLSGL
|
|
SCALE_INLINE
|
|
void scaleValues(FIXP_SGL *dst, /*!< dst Vector */
|
|
const FIXP_SGL *src, /*!< src Vector */
|
|
INT len, /*!< Length */
|
|
INT scalefactor /*!< Scalefactor */
|
|
) {
|
|
INT i;
|
|
|
|
/* Return if scalefactor is Zero */
|
|
if (scalefactor == 0) {
|
|
if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
|
|
} else {
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = *(src++) << scalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
*(dst++) = *(src++) << scalefactor;
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
*(dst++) = *(src++) >> negScalefactor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_scaleValuesWithFactor_DBL
|
|
/*!
|
|
*
|
|
* \brief Multiply input vector by \f$ 2^{scalefactor} \f$
|
|
* \param len must be larger than 4
|
|
* \return void
|
|
*
|
|
*/
|
|
#define FUNCTION_scaleValuesWithFactor_DBL
|
|
SCALE_INLINE
|
|
void scaleValuesWithFactor(FIXP_DBL *vector, FIXP_DBL factor, INT len,
|
|
INT scalefactor) {
|
|
INT i;
|
|
|
|
/* Compensate fMultDiv2 */
|
|
scalefactor++;
|
|
|
|
if (scalefactor > 0) {
|
|
scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*vector = fMultDiv2(*vector, factor) << scalefactor;
|
|
vector++;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*vector = fMultDiv2(*vector, factor) << scalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) << scalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) << scalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) << scalefactor;
|
|
vector++;
|
|
}
|
|
} else {
|
|
INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
|
|
for (i = len & 3; i--;) {
|
|
*vector = fMultDiv2(*vector, factor) >> negScalefactor;
|
|
vector++;
|
|
}
|
|
for (i = len >> 2; i--;) {
|
|
*vector = fMultDiv2(*vector, factor) >> negScalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) >> negScalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) >> negScalefactor;
|
|
vector++;
|
|
*vector = fMultDiv2(*vector, factor) >> negScalefactor;
|
|
vector++;
|
|
}
|
|
}
|
|
}
|
|
#endif /* FUNCTION_scaleValuesWithFactor_DBL */
|
|
|
|
/*******************************************
|
|
|
|
IMPORTANT NOTE for usage of getScalefactor()
|
|
|
|
If the input array contains negative values too, then these functions may
|
|
sometimes return the actual maximum value minus 1, due to the nature of the
|
|
applied algorithm. So be careful with possible fractional -1 values that may
|
|
lead to overflows when being fPow2()'ed.
|
|
|
|
********************************************/
|
|
|
|
#ifndef FUNCTION_getScalefactorShort
|
|
/*!
|
|
*
|
|
* \brief Calculate max possible scale factor for input vector of shorts
|
|
*
|
|
* \return Maximum scale factor / possible left shift
|
|
*
|
|
*/
|
|
#define FUNCTION_getScalefactorShort
|
|
SCALE_INLINE
|
|
INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
|
|
INT len /*!< Length of input vector */
|
|
) {
|
|
INT i;
|
|
SHORT temp, maxVal = 0;
|
|
|
|
for (i = len; i != 0; i--) {
|
|
temp = (SHORT)(*vector++);
|
|
maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
|
|
}
|
|
|
|
return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
|
|
(INT)(DFRACT_BITS - SHORT_BITS)));
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_getScalefactorPCM
|
|
/*!
|
|
*
|
|
* \brief Calculate max possible scale factor for input vector of shorts
|
|
*
|
|
* \return Maximum scale factor
|
|
*
|
|
*/
|
|
#define FUNCTION_getScalefactorPCM
|
|
SCALE_INLINE
|
|
INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */
|
|
INT len, /*!< Length of input vector */
|
|
INT stride) {
|
|
INT i;
|
|
INT_PCM temp, maxVal = 0;
|
|
|
|
for (i = len; i != 0; i--) {
|
|
temp = (INT_PCM)(*vector);
|
|
vector += stride;
|
|
maxVal |= (temp ^ (temp >> ((sizeof(INT_PCM) * 8) - 1)));
|
|
}
|
|
return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
|
|
(INT)(DFRACT_BITS - SAMPLE_BITS)));
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_getScalefactorShort
|
|
/*!
|
|
*
|
|
* \brief Calculate max possible scale factor for input vector of shorts
|
|
* \param stride, item increment between vector members.
|
|
* \return Maximum scale factor
|
|
*
|
|
*/
|
|
#define FUNCTION_getScalefactorShort
|
|
SCALE_INLINE
|
|
INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
|
|
INT len, /*!< Length of input vector */
|
|
INT stride) {
|
|
INT i;
|
|
SHORT temp, maxVal = 0;
|
|
|
|
for (i = len; i != 0; i--) {
|
|
temp = (SHORT)(*vector);
|
|
vector += stride;
|
|
maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
|
|
}
|
|
|
|
return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
|
|
(INT)(DFRACT_BITS - SHORT_BITS)));
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_getScalefactor_DBL
|
|
/*!
|
|
*
|
|
* \brief Calculate max possible scale factor for input vector
|
|
*
|
|
* \return Maximum scale factor
|
|
*
|
|
* This function can constitute a significant amount of computational
|
|
* complexity - very much depending on the bitrate. Since it is a rather small
|
|
* function, effective assembler optimization might be possible.
|
|
*
|
|
* If all data is 0xFFFF.FFFF or 0x0000.0000 function returns 31
|
|
* Note: You can skip data normalization only if return value is 0
|
|
*
|
|
*/
|
|
#define FUNCTION_getScalefactor_DBL
|
|
SCALE_INLINE
|
|
INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */
|
|
INT len) /*!< Length of input vector */
|
|
{
|
|
INT i;
|
|
FIXP_DBL temp, maxVal = (FIXP_DBL)0;
|
|
|
|
for (i = len; i != 0; i--) {
|
|
temp = (LONG)(*vector++);
|
|
maxVal |= (FIXP_DBL)((LONG)temp ^ (LONG)(temp >> (DFRACT_BITS - 1)));
|
|
}
|
|
|
|
return fixmax_I((INT)0, (INT)(fixnormz_D(maxVal) - 1));
|
|
}
|
|
#endif
|
|
|
|
#ifndef FUNCTION_getScalefactor_SGL
|
|
#define FUNCTION_getScalefactor_SGL
|
|
SCALE_INLINE
|
|
INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */
|
|
INT len) /*!< Length of input vector */
|
|
{
|
|
INT i;
|
|
SHORT temp, maxVal = (FIXP_SGL)0;
|
|
|
|
for (i = len; i != 0; i--) {
|
|
temp = (SHORT)(*vector++);
|
|
maxVal |= (temp ^ (temp >> (FRACT_BITS - 1)));
|
|
}
|
|
|
|
return fixmax_I((INT)0, (INT)(fixnormz_S((FIXP_SGL)maxVal)) - 1);
|
|
}
|
|
#endif
|