fdk-aac/libSACenc/src/sacenc_paramextract.cpp

726 lines
29 KiB
C++

/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/*********************** MPEG surround encoder library *************************
Author(s): M. Multrus
Description: Parameter Extraction
*******************************************************************************/
/* Includes ******************************************************************/
#include "sacenc_paramextract.h"
#include "sacenc_tree.h"
#include "sacenc_vectorfunctions.h"
/* Defines *******************************************************************/
#define LOG10_2_10 (3.01029995664f) /* 10.0f*log10(2.f) */
#define SCALE_CLDE_SF (7) /* maxVal in Quant tab is +/- 50 */
#define SCALE_CLDD_SF (8) /* maxVal in Quant tab is +/- 150 */
/* Data Types ****************************************************************/
typedef struct T_TTO_BOX {
FIXP_DBL pCld__FDK[MAX_NUM_PARAM_BANDS];
FIXP_DBL pIcc__FDK[MAX_NUM_PARAM_BANDS];
FIXP_DBL pCldQuant__FDK[MAX_NUM_PARAM_BANDS];
const FIXP_DBL *pIccQuantTable__FDK;
const FIXP_DBL *pCldQuantTableDec__FDK;
const FIXP_DBL *pCldQuantTableEnc__FDK;
SCHAR pCldEbQIdx[MAX_NUM_PARAM_BANDS];
SCHAR pIccDownmixIdx[MAX_NUM_PARAM_BANDS];
UCHAR *pParameterBand2HybridBandOffset;
const INT *pSubbandImagSign;
UCHAR nHybridBandsMax;
UCHAR nParameterBands;
UCHAR bFrameKeep;
UCHAR iccCorrelationCoherenceBorder;
BOX_QUANTMODE boxQuantMode;
UCHAR nIccQuantSteps;
UCHAR nIccQuantOffset;
UCHAR nCldQuantSteps;
UCHAR nCldQuantOffset;
UCHAR bUseCoarseQuantCld;
UCHAR bUseCoarseQuantIcc;
} TTO_BOX;
struct BOX_SUBBAND_SETUP {
BOX_SUBBAND_CONFIG subbandConfig;
UCHAR nParameterBands;
const UCHAR *pSubband2ParameterIndexLd;
UCHAR iccCorrelationCoherenceBorder;
};
/* Constants *****************************************************************/
static const UCHAR subband2Parameter4_Ld[NUM_QMF_BANDS] = {
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3};
static const UCHAR subband2Parameter5_Ld[NUM_QMF_BANDS] = {
0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4};
static const UCHAR subband2Parameter7_Ld[NUM_QMF_BANDS] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6};
static const UCHAR subband2Parameter9_Ld[NUM_QMF_BANDS] = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
static const UCHAR subband2Parameter12_Ld[NUM_QMF_BANDS] = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8,
8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11};
static const UCHAR subband2Parameter15_Ld[NUM_QMF_BANDS] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 10, 10, 11, 11,
11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14};
static const UCHAR subband2Parameter23_Ld[NUM_QMF_BANDS] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 13,
14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19,
19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22};
static const INT subbandImagSign_Ld[NUM_QMF_BANDS] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
#define SCALE_CLDE(a) (FL2FXCONST_DBL(a / (float)(1 << SCALE_CLDE_SF)))
static const FIXP_DBL cldQuantTableFineEnc__FDK[MAX_CLD_QUANT_FINE] = {
SCALE_CLDE(-50.0), SCALE_CLDE(-45.0), SCALE_CLDE(-40.0), SCALE_CLDE(-35.0),
SCALE_CLDE(-30.0), SCALE_CLDE(-25.0), SCALE_CLDE(-22.0), SCALE_CLDE(-19.0),
SCALE_CLDE(-16.0), SCALE_CLDE(-13.0), SCALE_CLDE(-10.0), SCALE_CLDE(-8.0),
SCALE_CLDE(-6.0), SCALE_CLDE(-4.0), SCALE_CLDE(-2.0), SCALE_CLDE(0.0),
SCALE_CLDE(2.0), SCALE_CLDE(4.0), SCALE_CLDE(6.0), SCALE_CLDE(8.0),
SCALE_CLDE(10.0), SCALE_CLDE(13.0), SCALE_CLDE(16.0), SCALE_CLDE(19.0),
SCALE_CLDE(22.0), SCALE_CLDE(25.0), SCALE_CLDE(30.0), SCALE_CLDE(35.0),
SCALE_CLDE(40.0), SCALE_CLDE(45.0), SCALE_CLDE(50.0)};
static const FIXP_DBL cldQuantTableCoarseEnc__FDK[MAX_CLD_QUANT_COARSE] = {
SCALE_CLDE(-50.0), SCALE_CLDE(-35.0), SCALE_CLDE(-25.0), SCALE_CLDE(-19.0),
SCALE_CLDE(-13.0), SCALE_CLDE(-8.0), SCALE_CLDE(-4.0), SCALE_CLDE(0.0),
SCALE_CLDE(4.0), SCALE_CLDE(8.0), SCALE_CLDE(13.0), SCALE_CLDE(19.0),
SCALE_CLDE(25.0), SCALE_CLDE(35.0), SCALE_CLDE(50.0)};
#define SCALE_CLDD(a) (FL2FXCONST_DBL(a / (float)(1 << SCALE_CLDD_SF)))
static const FIXP_DBL cldQuantTableFineDec__FDK[MAX_CLD_QUANT_FINE] = {
SCALE_CLDD(-150.0), SCALE_CLDD(-45.0), SCALE_CLDD(-40.0), SCALE_CLDD(-35.0),
SCALE_CLDD(-30.0), SCALE_CLDD(-25.0), SCALE_CLDD(-22.0), SCALE_CLDD(-19.0),
SCALE_CLDD(-16.0), SCALE_CLDD(-13.0), SCALE_CLDD(-10.0), SCALE_CLDD(-8.0),
SCALE_CLDD(-6.0), SCALE_CLDD(-4.0), SCALE_CLDD(-2.0), SCALE_CLDD(0.0),
SCALE_CLDD(2.0), SCALE_CLDD(4.0), SCALE_CLDD(6.0), SCALE_CLDD(8.0),
SCALE_CLDD(10.0), SCALE_CLDD(13.0), SCALE_CLDD(16.0), SCALE_CLDD(19.0),
SCALE_CLDD(22.0), SCALE_CLDD(25.0), SCALE_CLDD(30.0), SCALE_CLDD(35.0),
SCALE_CLDD(40.0), SCALE_CLDD(45.0), SCALE_CLDD(150.0)};
static const FIXP_DBL cldQuantTableCoarseDec__FDK[MAX_CLD_QUANT_COARSE] = {
SCALE_CLDD(-150.0), SCALE_CLDD(-35.0), SCALE_CLDD(-25.0), SCALE_CLDD(-19.0),
SCALE_CLDD(-13.0), SCALE_CLDD(-8.0), SCALE_CLDD(-4.0), SCALE_CLDD(0.0),
SCALE_CLDD(4.0), SCALE_CLDD(8.0), SCALE_CLDD(13.0), SCALE_CLDD(19.0),
SCALE_CLDD(25.0), SCALE_CLDD(35.0), SCALE_CLDD(150.0)};
#define SCALE_ICC(a) (FL2FXCONST_DBL(a))
static const FIXP_DBL iccQuantTableFine__FDK[MAX_ICC_QUANT_FINE] = {
SCALE_ICC(0.99999999953), SCALE_ICC(0.937f), SCALE_ICC(0.84118f),
SCALE_ICC(0.60092f), SCALE_ICC(0.36764f), SCALE_ICC(0.0f),
SCALE_ICC(-0.589f), SCALE_ICC(-0.99f)};
static const FIXP_DBL iccQuantTableCoarse__FDK[MAX_ICC_QUANT_COARSE] = {
SCALE_ICC(0.99999999953), SCALE_ICC(0.84118f), SCALE_ICC(0.36764f),
SCALE_ICC(-0.5890f)};
static const BOX_SUBBAND_SETUP boxSubbandSetup[] = {
{BOX_SUBBANDS_4, 4, subband2Parameter4_Ld, 1},
{BOX_SUBBANDS_5, 5, subband2Parameter5_Ld, 2},
{BOX_SUBBANDS_7, 7, subband2Parameter7_Ld, 3},
{BOX_SUBBANDS_9, 9, subband2Parameter9_Ld, 4},
{BOX_SUBBANDS_12, 12, subband2Parameter12_Ld, 4},
{BOX_SUBBANDS_15, 15, subband2Parameter15_Ld, 5},
{BOX_SUBBANDS_23, 23, subband2Parameter23_Ld, 8}};
/* Function / Class Declarations *********************************************/
/* Function / Class Definition ***********************************************/
static const BOX_SUBBAND_SETUP *getBoxSubbandSetup(
const BOX_SUBBAND_CONFIG subbandConfig) {
int i;
const BOX_SUBBAND_SETUP *setup = NULL;
for (i = 0; i < (int)(sizeof(boxSubbandSetup) / sizeof(BOX_SUBBAND_SETUP));
i++) {
if (boxSubbandSetup[i].subbandConfig == subbandConfig) {
setup = &boxSubbandSetup[i];
break;
}
}
return setup;
}
static inline void ApplyBBCuesFDK(FIXP_DBL *const pData,
const INT nParamBands) {
int i, s;
FIXP_DBL tmp, invParamBands;
invParamBands = fDivNormHighPrec((FIXP_DBL)1, (FIXP_DBL)nParamBands, &s);
s = -s;
tmp = fMult(pData[0], invParamBands) >> s;
for (i = 1; i < nParamBands; i++) {
tmp += fMult(pData[i], invParamBands) >> s;
}
for (i = 0; i < nParamBands; i++) {
pData[i] = tmp;
}
}
static INT getNumberParameterBands(const BOX_SUBBAND_CONFIG subbandConfig) {
const BOX_SUBBAND_SETUP *setup = getBoxSubbandSetup(subbandConfig);
return ((setup == NULL) ? 0 : setup->nParameterBands);
}
static const UCHAR *getSubband2ParameterIndex(
const BOX_SUBBAND_CONFIG subbandConfig) {
const BOX_SUBBAND_SETUP *setup = getBoxSubbandSetup(subbandConfig);
return ((setup == NULL) ? NULL : (setup->pSubband2ParameterIndexLd));
}
void fdk_sacenc_calcParameterBand2HybridBandOffset(
const BOX_SUBBAND_CONFIG subbandConfig, const INT nHybridBands,
UCHAR *pParameterBand2HybridBandOffset) {
const BOX_SUBBAND_SETUP *setup = getBoxSubbandSetup(subbandConfig);
const UCHAR *pSubband2ParameterIndex;
int i, pb;
pSubband2ParameterIndex = setup->pSubband2ParameterIndexLd;
for (pb = 0, i = 0; i < nHybridBands - 1; i++) {
if (pSubband2ParameterIndex[i + 1] - pSubband2ParameterIndex[i]) {
pParameterBand2HybridBandOffset[pb++] = (i + 1);
}
}
pParameterBand2HybridBandOffset[pb++] = (i + 1);
}
const INT *fdk_sacenc_getSubbandImagSign() {
const INT *pImagSign = NULL;
pImagSign = subbandImagSign_Ld;
return (pImagSign);
}
static INT getIccCorrelationCoherenceBorder(
const BOX_SUBBAND_CONFIG subbandConfig, const INT bUseCoherenceOnly) {
const BOX_SUBBAND_SETUP *setup = getBoxSubbandSetup(subbandConfig);
return (
(setup == NULL)
? 0
: ((bUseCoherenceOnly) ? 0 : setup->iccCorrelationCoherenceBorder));
}
FDK_SACENC_ERROR fdk_sacenc_createTtoBox(HANDLE_TTO_BOX *hTtoBox) {
FDK_SACENC_ERROR error = SACENC_OK;
if (NULL == hTtoBox) {
error = SACENC_INVALID_HANDLE;
} else {
FDK_ALLOCATE_MEMORY_1D(*hTtoBox, 1, TTO_BOX);
}
return error;
bail:
fdk_sacenc_destroyTtoBox(hTtoBox);
return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error);
}
FDK_SACENC_ERROR fdk_sacenc_initTtoBox(HANDLE_TTO_BOX hTtoBox,
const TTO_BOX_CONFIG *const ttoBoxConfig,
UCHAR *pParameterBand2HybridBandOffset) {
FDK_SACENC_ERROR error = SACENC_OK;
if ((hTtoBox == NULL) || (ttoBoxConfig == NULL) ||
(pParameterBand2HybridBandOffset == NULL)) {
error = SACENC_INVALID_HANDLE;
} else {
FDKmemclear(hTtoBox, sizeof(TTO_BOX));
hTtoBox->bUseCoarseQuantCld = ttoBoxConfig->bUseCoarseQuantCld;
hTtoBox->bUseCoarseQuantIcc = ttoBoxConfig->bUseCoarseQuantIcc;
hTtoBox->boxQuantMode = ttoBoxConfig->boxQuantMode;
hTtoBox->iccCorrelationCoherenceBorder = getIccCorrelationCoherenceBorder(
ttoBoxConfig->subbandConfig, ttoBoxConfig->bUseCoherenceIccOnly);
hTtoBox->nHybridBandsMax = ttoBoxConfig->nHybridBandsMax;
hTtoBox->nParameterBands =
getNumberParameterBands(ttoBoxConfig->subbandConfig);
hTtoBox->bFrameKeep = ttoBoxConfig->bFrameKeep;
hTtoBox->nIccQuantSteps =
fdk_sacenc_getNumberIccQuantLevels(hTtoBox->bUseCoarseQuantIcc);
hTtoBox->nIccQuantOffset =
fdk_sacenc_getIccQuantOffset(hTtoBox->bUseCoarseQuantIcc);
hTtoBox->pIccQuantTable__FDK = hTtoBox->bUseCoarseQuantIcc
? iccQuantTableCoarse__FDK
: iccQuantTableFine__FDK;
hTtoBox->pCldQuantTableDec__FDK = hTtoBox->bUseCoarseQuantCld
? cldQuantTableCoarseDec__FDK
: cldQuantTableFineDec__FDK;
hTtoBox->pCldQuantTableEnc__FDK = hTtoBox->bUseCoarseQuantCld
? cldQuantTableCoarseEnc__FDK
: cldQuantTableFineEnc__FDK;
hTtoBox->nCldQuantSteps =
fdk_sacenc_getNumberCldQuantLevels(hTtoBox->bUseCoarseQuantCld);
hTtoBox->nCldQuantOffset =
fdk_sacenc_getCldQuantOffset(hTtoBox->bUseCoarseQuantCld);
/* sanity */
if (NULL == (hTtoBox->pParameterBand2HybridBandOffset =
pParameterBand2HybridBandOffset)) {
error = SACENC_INIT_ERROR;
goto bail;
}
if (NULL == (hTtoBox->pSubbandImagSign = fdk_sacenc_getSubbandImagSign())) {
error = SACENC_INIT_ERROR;
}
if ((hTtoBox->boxQuantMode != BOX_QUANTMODE_FINE) &&
(hTtoBox->boxQuantMode != BOX_QUANTMODE_EBQ1) &&
(hTtoBox->boxQuantMode != BOX_QUANTMODE_EBQ2)) {
error = SACENC_INIT_ERROR;
goto bail;
}
}
bail:
return error;
}
FDK_SACENC_ERROR fdk_sacenc_destroyTtoBox(HANDLE_TTO_BOX *hTtoBox) {
FDK_SACENC_ERROR error = SACENC_OK;
if (*hTtoBox != NULL) {
FDKfree(*hTtoBox);
*hTtoBox = NULL;
}
return error;
}
static FDK_SACENC_ERROR calculateIccFDK(const INT nParamBand,
const INT correlationCoherenceBorder,
const FIXP_DBL *const pPwr1,
const FIXP_DBL *const pPwr2,
const FIXP_DBL *const pProdReal,
FIXP_DBL const *const pProdImag,
FIXP_DBL *const pIcc) {
FDK_SACENC_ERROR error = SACENC_OK;
if ((pPwr1 == NULL) || (pPwr2 == NULL) || (pProdReal == NULL) ||
(pProdImag == NULL) || (pIcc == NULL)) {
error = SACENC_INVALID_HANDLE;
} else {
/* sanity check border */
if (correlationCoherenceBorder > nParamBand) {
error = SACENC_INVALID_CONFIG;
} else {
/* correlation */
FDKcalcCorrelationVec(pIcc, pProdReal, pPwr1, pPwr2,
correlationCoherenceBorder);
/* coherence */
calcCoherenceVec(&pIcc[correlationCoherenceBorder],
&pProdReal[correlationCoherenceBorder],
&pProdImag[correlationCoherenceBorder],
&pPwr1[correlationCoherenceBorder],
&pPwr2[correlationCoherenceBorder], 0, 0,
nParamBand - correlationCoherenceBorder);
} /* valid configuration */
} /* valid handle */
return error;
}
static void QuantizeCoefFDK(const FIXP_DBL *const input, const INT nBands,
const FIXP_DBL *const quantTable,
const INT idxOffset, const INT nQuantSteps,
SCHAR *const quantOut) {
int band;
const int reverse = (quantTable[0] > quantTable[1]);
for (band = 0; band < nBands; band++) {
FIXP_DBL qVal;
FIXP_DBL curVal = input[band];
int lower = 0;
int upper = nQuantSteps - 1;
if (reverse) {
while (upper - lower > 1) {
int idx = (lower + upper) >> 1;
qVal = quantTable[idx];
if (curVal >= qVal) {
upper = idx;
} else {
lower = idx;
}
} /* while */
if ((curVal - quantTable[lower]) >= (quantTable[upper] - curVal)) {
quantOut[band] = lower - idxOffset;
} else {
quantOut[band] = upper - idxOffset;
}
} /* if reverse */
else {
while (upper - lower > 1) {
int idx = (lower + upper) >> 1;
qVal = quantTable[idx];
if (curVal <= qVal) {
upper = idx;
} else {
lower = idx;
}
} /* while */
if ((curVal - quantTable[lower]) <= (quantTable[upper] - curVal)) {
quantOut[band] = lower - idxOffset;
} else {
quantOut[band] = upper - idxOffset;
}
} /* else reverse */
} /* for band */
}
static void deQuantizeCoefFDK(const SCHAR *const input, const INT nBands,
const FIXP_DBL *const quantTable,
const INT idxOffset, FIXP_DBL *const dequantOut) {
int band;
for (band = 0; band < nBands; band++) {
dequantOut[band] = quantTable[input[band] + idxOffset];
}
}
static void CalculateCldFDK(FIXP_DBL *const pCld, const FIXP_DBL *const pPwr1,
const FIXP_DBL *const pPwr2, const INT scaleCh1,
const INT *const pbScaleCh1, const INT scaleCh2,
const INT *const pbScaleCh2, const int nParamBand) {
INT i;
FIXP_DBL ldPwr1, ldPwr2, cld;
FIXP_DBL maxPwr = FL2FXCONST_DBL(
30.0f /
(1 << (LD_DATA_SHIFT +
1))); /* consider SACENC_FLOAT_EPSILON in power calculation */
for (i = 0; i < nParamBand; i++) {
ldPwr1 =
(CalcLdData(pPwr1[i]) >> 1) + ((FIXP_DBL)(scaleCh1 + pbScaleCh1[i])
<< (DFRACT_BITS - 1 - LD_DATA_SHIFT));
ldPwr2 =
(CalcLdData(pPwr2[i]) >> 1) + ((FIXP_DBL)(scaleCh2 + pbScaleCh2[i])
<< (DFRACT_BITS - 1 - LD_DATA_SHIFT));
ldPwr1 = fixMax(fixMin(ldPwr1, maxPwr), -maxPwr);
ldPwr2 = fixMax(fixMin(ldPwr2, maxPwr), -maxPwr);
/* ldPwr1 and ldPwr2 are scaled by LD_DATA_SHIFT and additional 1 bit; 1 bit
* scale by fMultDiv2() */
cld = fMultDiv2(FL2FXCONST_DBL(LOG10_2_10 / (1 << SCALE_CLDE_SF)),
ldPwr1 - ldPwr2);
cld =
fixMin(cld, (FIXP_DBL)(((FIXP_DBL)MAXVAL_DBL) >> (LD_DATA_SHIFT + 2)));
cld =
fixMax(cld, (FIXP_DBL)(((FIXP_DBL)MINVAL_DBL) >> (LD_DATA_SHIFT + 2)));
pCld[i] = cld << (LD_DATA_SHIFT + 2);
}
}
FDK_SACENC_ERROR fdk_sacenc_applyTtoBox(
HANDLE_TTO_BOX hTtoBox, const INT nTimeSlots, const INT startTimeSlot,
const INT nHybridBands, const FIXP_DPK *const *const ppHybridData1__FDK,
const FIXP_DPK *const *const ppHybridData2__FDK, SCHAR *const pIccIdx,
UCHAR *const pbIccQuantCoarse, SCHAR *const pCldIdx,
UCHAR *const pbCldQuantCoarse, const INT bUseBBCues, INT *scaleCh1,
INT *scaleCh2) {
FDK_SACENC_ERROR error = SACENC_OK;
C_ALLOC_SCRATCH_START(powerHybridData1__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(powerHybridData2__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(prodHybridDataReal__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(prodHybridDataImag__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(IccDownmix__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(IccDownmixQuant__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(pbScaleCh1, INT, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_START(pbScaleCh2, INT, MAX_NUM_PARAM_BANDS)
if ((hTtoBox == NULL) || (pCldIdx == NULL) || (pbCldQuantCoarse == NULL) ||
(ppHybridData1__FDK == NULL) || (ppHybridData2__FDK == NULL) ||
(pIccIdx == NULL) || (pbIccQuantCoarse == NULL)) {
error = SACENC_INVALID_HANDLE;
} else {
int j, pb;
const int nParamBands = hTtoBox->nParameterBands;
const int bUseEbQ = (hTtoBox->boxQuantMode == BOX_QUANTMODE_EBQ1) ||
(hTtoBox->boxQuantMode == BOX_QUANTMODE_EBQ2);
/* sanity check */
if ((nHybridBands < 0) || (nHybridBands > hTtoBox->nHybridBandsMax)) {
error = SACENC_INVALID_CONFIG;
goto bail;
}
int outScale; /* scalefactor will not be evaluated */
int inScale = 5; /* scale factor determined empirically */
/* calculate the headroom of the hybrid data for each parameter band */
FDKcalcPbScaleFactor(ppHybridData1__FDK,
hTtoBox->pParameterBand2HybridBandOffset, pbScaleCh1,
startTimeSlot, nTimeSlots, nParamBands);
FDKcalcPbScaleFactor(ppHybridData2__FDK,
hTtoBox->pParameterBand2HybridBandOffset, pbScaleCh2,
startTimeSlot, nTimeSlots, nParamBands);
for (j = 0, pb = 0; pb < nParamBands; pb++) {
FIXP_DBL data1, data2;
data1 = data2 = (FIXP_DBL)0;
for (; j < hTtoBox->pParameterBand2HybridBandOffset[pb]; j++) {
data1 += sumUpCplxPow2Dim2(ppHybridData1__FDK, SUM_UP_STATIC_SCALE,
inScale + pbScaleCh1[pb], &outScale,
startTimeSlot, nTimeSlots, j, j + 1);
data2 += sumUpCplxPow2Dim2(ppHybridData2__FDK, SUM_UP_STATIC_SCALE,
inScale + pbScaleCh2[pb], &outScale,
startTimeSlot, nTimeSlots, j, j + 1);
} /* for j */
powerHybridData1__FDK[pb] = data1;
powerHybridData2__FDK[pb] = data2;
} /* pb */
{
for (j = 0, pb = 0; pb < nParamBands; pb++) {
FIXP_DBL dataReal, dataImag;
dataReal = dataImag = (FIXP_DBL)0;
for (; j < hTtoBox->pParameterBand2HybridBandOffset[pb]; j++) {
FIXP_DPK scalarProd;
cplx_cplxScalarProduct(&scalarProd, ppHybridData1__FDK,
ppHybridData2__FDK, inScale + pbScaleCh1[pb],
inScale + pbScaleCh2[pb], &outScale,
startTimeSlot, nTimeSlots, j, j + 1);
dataReal += scalarProd.v.re;
if (hTtoBox->pSubbandImagSign[j] < 0) {
dataImag -= scalarProd.v.im;
} else {
dataImag += scalarProd.v.im;
}
} /* for j */
prodHybridDataReal__FDK[pb] = dataReal;
prodHybridDataImag__FDK[pb] = dataImag;
} /* pb */
if (SACENC_OK != (error = calculateIccFDK(
nParamBands, hTtoBox->iccCorrelationCoherenceBorder,
powerHybridData1__FDK, powerHybridData2__FDK,
prodHybridDataReal__FDK, prodHybridDataImag__FDK,
hTtoBox->pIcc__FDK))) {
goto bail;
}
/* calculate correlation based Icc for downmix */
if (SACENC_OK != (error = calculateIccFDK(
nParamBands, nParamBands, powerHybridData1__FDK,
powerHybridData2__FDK, prodHybridDataReal__FDK,
prodHybridDataImag__FDK, IccDownmix__FDK))) {
goto bail;
}
}
if (!bUseEbQ) {
CalculateCldFDK(hTtoBox->pCld__FDK, powerHybridData1__FDK,
powerHybridData2__FDK, *scaleCh1 + inScale + 1,
pbScaleCh1, *scaleCh2 + inScale + 1, pbScaleCh2,
nParamBands);
}
if (bUseBBCues) {
ApplyBBCuesFDK(&hTtoBox->pCld__FDK[0], nParamBands);
{ ApplyBBCuesFDK(&hTtoBox->pIcc__FDK[0], nParamBands); }
} /* bUseBBCues */
/* quantize/de-quantize icc */
{
QuantizeCoefFDK(hTtoBox->pIcc__FDK, nParamBands,
hTtoBox->pIccQuantTable__FDK, hTtoBox->nIccQuantOffset,
hTtoBox->nIccQuantSteps, pIccIdx);
QuantizeCoefFDK(IccDownmix__FDK, nParamBands,
hTtoBox->pIccQuantTable__FDK, hTtoBox->nIccQuantOffset,
hTtoBox->nIccQuantSteps, hTtoBox->pIccDownmixIdx);
deQuantizeCoefFDK(hTtoBox->pIccDownmixIdx, nParamBands,
hTtoBox->pIccQuantTable__FDK, hTtoBox->nIccQuantOffset,
IccDownmixQuant__FDK);
*pbIccQuantCoarse = hTtoBox->bUseCoarseQuantIcc;
}
/* quantize/de-quantize cld */
if (!bUseEbQ) {
QuantizeCoefFDK(hTtoBox->pCld__FDK, nParamBands,
hTtoBox->pCldQuantTableEnc__FDK, hTtoBox->nCldQuantOffset,
hTtoBox->nCldQuantSteps, pCldIdx);
deQuantizeCoefFDK(pCldIdx, nParamBands, hTtoBox->pCldQuantTableDec__FDK,
hTtoBox->nCldQuantOffset, hTtoBox->pCldQuant__FDK);
} else {
FDKmemcpy(pCldIdx, hTtoBox->pCldEbQIdx, nParamBands * sizeof(SCHAR));
}
*pbCldQuantCoarse = hTtoBox->bUseCoarseQuantCld;
} /* valid handle */
bail:
C_ALLOC_SCRATCH_END(pbScaleCh2, INT, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(pbScaleCh1, INT, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(IccDownmixQuant__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(IccDownmix__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(prodHybridDataImag__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(prodHybridDataReal__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(powerHybridData2__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
C_ALLOC_SCRATCH_END(powerHybridData1__FDK, FIXP_DBL, MAX_NUM_PARAM_BANDS)
return error;
}
INT fdk_sacenc_subband2ParamBand(const BOX_SUBBAND_CONFIG boxSubbandConfig,
const INT nSubband) {
INT nParamBand = -1;
const UCHAR *pSubband2ParameterIndex =
getSubband2ParameterIndex(boxSubbandConfig);
if (pSubband2ParameterIndex != NULL) {
const int hybrid_resolution = 64;
if ((nSubband > -1) && (nSubband < hybrid_resolution)) {
nParamBand = pSubband2ParameterIndex[nSubband];
}
}
return nParamBand;
}