1
0
mirror of https://github.com/mstorsjo/fdk-aac.git synced 2025-02-14 18:30:39 +01:00

Snap for 6138855 from 063d5f30864c6293855da6f7b8dd482d7c408158 to rvc-release

Change-Id: I76b653e2aa437267603833e7fade774c4d210243
This commit is contained in:
android-build-team Robot 2020-01-16 04:25:38 +00:00
commit 29c3f50d14
5 changed files with 119 additions and 92 deletions

View File

@ -1,7 +1,7 @@
/* ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved. Forschung e.V. All rights reserved.
1. INTRODUCTION 1. INTRODUCTION
@ -545,15 +545,20 @@ inline INT fMultIceil(FIXP_DBL a, INT b) {
m = fMultNorm(a, (FIXP_DBL)b, &m_e); m = fMultNorm(a, (FIXP_DBL)b, &m_e);
if (m_e < (INT)0) { if (m_e < (INT)0) {
if (m_e > (INT)-DFRACT_BITS) { if (m_e > (INT) - (DFRACT_BITS - 1)) {
mi = (m >> (-m_e)); mi = (m >> (-m_e));
if ((LONG)m & ((1 << (-m_e)) - 1)) { if ((LONG)m & ((1 << (-m_e)) - 1)) {
mi = mi + (FIXP_DBL)1; mi = mi + (FIXP_DBL)1;
} }
} else { } else {
mi = (FIXP_DBL)1; if (m > (FIXP_DBL)0) {
if (m < (FIXP_DBL)0) { mi = (FIXP_DBL)1;
mi = (FIXP_DBL)0; } else {
if ((m_e == -(DFRACT_BITS - 1)) && (m == (FIXP_DBL)MINVAL_DBL)) {
mi = (FIXP_DBL)-1;
} else {
mi = (FIXP_DBL)0;
}
} }
} }
} else { } else {

View File

@ -1,7 +1,7 @@
/* ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved. Forschung e.V. All rights reserved.
1. INTRODUCTION 1. INTRODUCTION
@ -142,11 +142,12 @@ amm-info@iis.fraunhofer.de
} /* How to arrange the packed values. */ } /* How to arrange the packed values. */
struct FDK_HYBRID_SETUP { struct FDK_HYBRID_SETUP {
UCHAR nrQmfBands; /*!< Number of QMF bands to be converted to hybrid. */ UCHAR nrQmfBands; /*!< Number of QMF bands to be converted to hybrid. */
UCHAR nHybBands[3]; /*!< Number of Hybrid bands generated by nrQmfBands. */ UCHAR nHybBands[3]; /*!< Number of Hybrid bands generated by nrQmfBands. */
SCHAR kHybrid[3]; /*!< Filter configuration of each QMF band. */ UCHAR synHybScale[3]; /*!< Headroom needed in hybrid synthesis filterbank. */
UCHAR protoLen; /*!< Prototype filter length. */ SCHAR kHybrid[3]; /*!< Filter configuration of each QMF band. */
UCHAR filterDelay; /*!< Delay caused by hybrid filter. */ UCHAR protoLen; /*!< Prototype filter length. */
UCHAR filterDelay; /*!< Delay caused by hybrid filter. */
const INT const INT
*pReadIdxTable; /*!< Helper table to access input data ringbuffer. */ *pReadIdxTable; /*!< Helper table to access input data ringbuffer. */
}; };
@ -156,12 +157,12 @@ static const INT ringbuffIdxTab[2 * 13] = {0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 0, 1, 2, 3, 4, 9, 10, 11, 12, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12}; 5, 6, 7, 8, 9, 10, 11, 12};
static const FDK_HYBRID_SETUP setup_3_16 = {3, {8, 4, 4}, {8, 4, 4}, static const FDK_HYBRID_SETUP setup_3_16 = {
13, (13 - 1) / 2, ringbuffIdxTab}; 3, {8, 4, 4}, {4, 3, 3}, {8, 4, 4}, 13, (13 - 1) / 2, ringbuffIdxTab};
static const FDK_HYBRID_SETUP setup_3_12 = {3, {8, 2, 2}, {8, 2, 2}, static const FDK_HYBRID_SETUP setup_3_12 = {
13, (13 - 1) / 2, ringbuffIdxTab}; 3, {8, 2, 2}, {4, 2, 2}, {8, 2, 2}, 13, (13 - 1) / 2, ringbuffIdxTab};
static const FDK_HYBRID_SETUP setup_3_10 = {3, {6, 2, 2}, {-8, -2, 2}, static const FDK_HYBRID_SETUP setup_3_10 = {
13, (13 - 1) / 2, ringbuffIdxTab}; 3, {6, 2, 2}, {3, 2, 2}, {-8, -2, 2}, 13, (13 - 1) / 2, ringbuffIdxTab};
static const FIXP_HTP HybFilterCoef8[] = { static const FIXP_HTP HybFilterCoef8[] = {
HTCP(0x10000000, 0x00000000), HTCP(0x0df26407, 0xfa391882), HTCP(0x10000000, 0x00000000), HTCP(0x0df26407, 0xfa391882),
@ -477,17 +478,18 @@ void FDKhybridSynthesisApply(HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
*/ */
for (k = 0; k < nrQmfBandsLF; k++) { for (k = 0; k < nrQmfBandsLF; k++) {
const int nHybBands = hSynthesisHybFilter->pSetup->nHybBands[k]; const int nHybBands = hSynthesisHybFilter->pSetup->nHybBands[k];
const int scale = hSynthesisHybFilter->pSetup->synHybScale[k];
FIXP_DBL accu1 = FL2FXCONST_DBL(0.f); FIXP_DBL accu1 = FL2FXCONST_DBL(0.f);
FIXP_DBL accu2 = FL2FXCONST_DBL(0.f); FIXP_DBL accu2 = FL2FXCONST_DBL(0.f);
/* Perform hybrid filtering. */ /* Perform hybrid filtering. */
for (n = 0; n < nHybBands; n++) { for (n = 0; n < nHybBands; n++) {
accu1 += pHybridReal[hybOffset + n]; accu1 += pHybridReal[hybOffset + n] >> scale;
accu2 += pHybridImag[hybOffset + n]; accu2 += pHybridImag[hybOffset + n] >> scale;
} }
pQmfReal[k] = accu1; pQmfReal[k] = SATURATE_LEFT_SHIFT(accu1, scale, DFRACT_BITS);
pQmfImag[k] = accu2; pQmfImag[k] = SATURATE_LEFT_SHIFT(accu2, scale, DFRACT_BITS);
hybOffset += nHybBands; hybOffset += nHybBands;
} }

View File

@ -1,7 +1,7 @@
/* ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved. Forschung e.V. All rights reserved.
1. INTRODUCTION 1. INTRODUCTION
@ -117,6 +117,9 @@ amm-info@iis.fraunhofer.de
/* Scaling of spectral data after applying M2 matrix, but only for binaural /* Scaling of spectral data after applying M2 matrix, but only for binaural
upmix type Scaling is compensated later in synthesis qmf filterbank */ upmix type Scaling is compensated later in synthesis qmf filterbank */
#define SCALE_DATA_APPLY_M2 (1) #define SCALE_DATA_APPLY_M2 (1)
/* Applying M2 parameter in combination with phase coding needs 2 bits headroom
* because up to a maximum of 4 spectral values can be added for USAC */
#define SCALE_DATA_APPLY_M2_PC (2)
SACDEC_ERROR initM1andM2(spatialDec* self, int initStatesFlag, SACDEC_ERROR initM1andM2(spatialDec* self, int initStatesFlag,
int configChanged); int configChanged);

View File

@ -1317,10 +1317,12 @@ static SACDEC_ERROR SpatialDecApplyParameterSets(
if ((self->tempShapeConfig == 1) && (!isTwoChMode(self->upmixType))) { if ((self->tempShapeConfig == 1) && (!isTwoChMode(self->upmixType))) {
for (ch = 0; ch < self->numOutputChannels; ch++) { for (ch = 0; ch < self->numOutputChannels; ch++) {
for (hyb = 0; hyb < self->tp_hybBandBorder; hyb++) { for (hyb = 0; hyb < self->tp_hybBandBorder; hyb++) {
self->hybOutputRealDry__FDK[ch][hyb] += self->hybOutputRealDry__FDK[ch][hyb] =
self->hybOutputRealWet__FDK[ch][hyb]; fAddSaturate(self->hybOutputRealDry__FDK[ch][hyb],
self->hybOutputImagDry__FDK[ch][hyb] += self->hybOutputRealWet__FDK[ch][hyb]);
self->hybOutputImagWet__FDK[ch][hyb]; self->hybOutputImagDry__FDK[ch][hyb] =
fAddSaturate(self->hybOutputImagDry__FDK[ch][hyb],
self->hybOutputImagWet__FDK[ch][hyb]);
} /* loop hyb */ } /* loop hyb */
} /* loop ch */ } /* loop ch */
err = subbandTPApply( err = subbandTPApply(
@ -1341,11 +1343,11 @@ static SACDEC_ERROR SpatialDecApplyParameterSets(
FIXP_DBL *RESTRICT pRealWet = self->hybOutputRealWet__FDK[ch]; FIXP_DBL *RESTRICT pRealWet = self->hybOutputRealWet__FDK[ch];
FIXP_DBL *RESTRICT pImagWet = self->hybOutputImagWet__FDK[ch]; FIXP_DBL *RESTRICT pImagWet = self->hybOutputImagWet__FDK[ch];
for (hyb = 0; hyb < nHybBands; hyb++) { for (hyb = 0; hyb < nHybBands; hyb++) {
pRealDry[hyb] += pRealWet[hyb]; pRealDry[hyb] = fAddSaturate(pRealDry[hyb], pRealWet[hyb]);
pImagDry[hyb] += pImagWet[hyb]; pImagDry[hyb] = fAddSaturate(pImagDry[hyb], pImagWet[hyb]);
} /* loop hyb */ } /* loop hyb */
for (; hyb < self->hybridBands; hyb++) { for (; hyb < self->hybridBands; hyb++) {
pRealDry[hyb] += pRealWet[hyb]; pRealDry[hyb] = fAddSaturate(pRealDry[hyb], pRealWet[hyb]);
} /* loop hyb */ } /* loop hyb */
} /* loop ch */ } /* loop ch */
} /* ( self->tempShapeConfig == 1 ) || ( self->tempShapeConfig == 2 ) */ } /* ( self->tempShapeConfig == 1 ) || ( self->tempShapeConfig == 2 ) */

View File

@ -1,7 +1,7 @@
/* ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved. Forschung e.V. All rights reserved.
1. INTRODUCTION 1. INTRODUCTION
@ -113,6 +113,8 @@ amm-info@iis.fraunhofer.de
#include "FDK_trigFcts.h" #include "FDK_trigFcts.h"
#include "FDK_decorrelate.h" #include "FDK_decorrelate.h"
#define SAC_DEC_APPLY_M2_SCALE(spec, s) ((spec) >> (-(s)))
/** /**
* \brief Linear interpolation between two parameter values. * \brief Linear interpolation between two parameter values.
* a*alpha + b*(1-alpha) * a*alpha + b*(1-alpha)
@ -634,8 +636,7 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
} }
if (self->phaseCoding == 3) { if (self->phaseCoding == 3) {
/* + SCALE_DATA_APPLY_M2 to compensate for Div2 below ?! */ scale_param_m2 = -(SCALE_DATA_APPLY_M2_PC - 1);
scale_param_m2 = SCALE_PARAM_M2_212_PRED + SCALE_DATA_APPLY_M2;
} }
for (row = 0; row < self->numM2rows; row++) { for (row = 0; row < self->numM2rows; row++) {
@ -686,10 +687,10 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
} else { /* isBinauralMode(self->upmixType) */ } else { /* isBinauralMode(self->upmixType) */
for (qs = 0; qs < complexHybBands; qs++) { for (qs = 0; qs < complexHybBands; qs++) {
pHybOutRealDry[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutRealDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
pHybOutImagDry[qs] += fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutImagDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
} }
M2ParamToKernelMult(pKernel, self->M2Imag__FDK[row][col], M2ParamToKernelMult(pKernel, self->M2Imag__FDK[row][col],
@ -697,27 +698,27 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
self->kernels_width, alpha, complexParBands); self->kernels_width, alpha, complexParBands);
/* direct signals sign is -1 for qs = 0,2 */ /* direct signals sign is -1 for qs = 0,2 */
pHybOutRealDry[0] += fMultDiv2(pWImag[0], pKernel[0]) pHybOutRealDry[0] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[0], pKernel[0]), scale_param_m2);
pHybOutImagDry[0] -= fMultDiv2(pWReal[0], pKernel[0]) pHybOutImagDry[0] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[0], pKernel[0]), scale_param_m2);
pHybOutRealDry[2] += fMultDiv2(pWImag[2], pKernel[2]) pHybOutRealDry[2] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[2], pKernel[2]), scale_param_m2);
pHybOutImagDry[2] -= fMultDiv2(pWReal[2], pKernel[2]) pHybOutImagDry[2] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[2], pKernel[2]), scale_param_m2);
/* direct signals sign is +1 for qs = 1,3,4,5,...,complexHybBands */ /* direct signals sign is +1 for qs = 1,3,4,5,...,complexHybBands */
pHybOutRealDry[1] -= fMultDiv2(pWImag[1], pKernel[1]) pHybOutRealDry[1] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[1], pKernel[1]), scale_param_m2);
pHybOutImagDry[1] += fMultDiv2(pWReal[1], pKernel[1]) pHybOutImagDry[1] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[1], pKernel[1]), scale_param_m2);
for (qs = 3; qs < complexHybBands; qs++) { for (qs = 3; qs < complexHybBands; qs++) {
pHybOutRealDry[qs] -= fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutRealDry[qs] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
pHybOutImagDry[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutImagDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
} }
} /* self->upmixType */ } /* self->upmixType */
} /* if (activParamBands) */ } /* if (activParamBands) */
@ -770,17 +771,17 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
FIXP_DBL *RESTRICT pHybOutImag; FIXP_DBL *RESTRICT pHybOutImag;
for (qs = 0; qs < resHybIndex; qs++) { for (qs = 0; qs < resHybIndex; qs++) {
pHybOutRealDry[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutRealDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
pHybOutImagDry[qs] += fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutImagDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
} }
/* decor signals */ /* decor signals */
for (; qs < complexHybBands; qs++) { for (; qs < complexHybBands; qs++) {
pHybOutRealWet[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutRealWet[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
pHybOutImagWet[qs] += fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutImagWet[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
} }
M2ParamToKernelMult(pKernel, self->M2Imag__FDK[row][col], M2ParamToKernelMult(pKernel, self->M2Imag__FDK[row][col],
@ -790,20 +791,20 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
/* direct signals sign is -1 for qs = 0,2 */ /* direct signals sign is -1 for qs = 0,2 */
/* direct signals sign is +1 for qs = 1,3.. */ /* direct signals sign is +1 for qs = 1,3.. */
if (toolsDisabled) { if (toolsDisabled) {
pHybOutRealDry[0] += fMultDiv2(pWImag[0], pKernel[0]) pHybOutRealDry[0] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[0], pKernel[0]), scale_param_m2);
pHybOutImagDry[0] -= fMultDiv2(pWReal[0], pKernel[0]) pHybOutImagDry[0] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[0], pKernel[0]), scale_param_m2);
pHybOutRealDry[1] -= fMultDiv2(pWImag[1], pKernel[1]) pHybOutRealDry[1] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[1], pKernel[1]), scale_param_m2);
pHybOutImagDry[1] += fMultDiv2(pWReal[1], pKernel[1]) pHybOutImagDry[1] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[1], pKernel[1]), scale_param_m2);
pHybOutRealDry[2] += fMultDiv2(pWImag[2], pKernel[2]) pHybOutRealDry[2] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[2], pKernel[2]), scale_param_m2);
pHybOutImagDry[2] -= fMultDiv2(pWReal[2], pKernel[2]) pHybOutImagDry[2] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[2], pKernel[2]), scale_param_m2);
} else { } else {
pHybOutReal = &pHybOutRealDry[0]; pHybOutReal = &pHybOutRealDry[0];
pHybOutImag = &pHybOutImagDry[0]; pHybOutImag = &pHybOutImagDry[0];
@ -811,46 +812,60 @@ SACDEC_ERROR SpatialDecApplyM2(spatialDec *self, INT ps, const FIXP_SGL alpha,
pHybOutReal = &pHybOutRealWet[0]; pHybOutReal = &pHybOutRealWet[0];
pHybOutImag = &pHybOutImagWet[0]; pHybOutImag = &pHybOutImagWet[0];
} }
pHybOutReal[0] += fMultDiv2(pWImag[0], pKernel[0]) pHybOutReal[0] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[0], pKernel[0]), scale_param_m2);
pHybOutImag[0] -= fMultDiv2(pWReal[0], pKernel[0]) pHybOutImag[0] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[0], pKernel[0]), scale_param_m2);
if (1 == resHybIndex) { if (1 == resHybIndex) {
pHybOutReal = &pHybOutRealWet[0]; pHybOutReal = &pHybOutRealWet[0];
pHybOutImag = &pHybOutImagWet[0]; pHybOutImag = &pHybOutImagWet[0];
} }
pHybOutReal[1] -= fMultDiv2(pWImag[1], pKernel[1]) pHybOutReal[1] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[1], pKernel[1]), scale_param_m2);
pHybOutImag[1] += fMultDiv2(pWReal[1], pKernel[1]) pHybOutImag[1] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[1], pKernel[1]), scale_param_m2);
if (2 == resHybIndex) { if (2 == resHybIndex) {
pHybOutReal = &pHybOutRealWet[0]; pHybOutReal = &pHybOutRealWet[0];
pHybOutImag = &pHybOutImagWet[0]; pHybOutImag = &pHybOutImagWet[0];
} }
pHybOutReal[2] += fMultDiv2(pWImag[2], pKernel[2]) pHybOutReal[2] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[2], pKernel[2]), scale_param_m2);
pHybOutImag[2] -= fMultDiv2(pWReal[2], pKernel[2]) pHybOutImag[2] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[2], pKernel[2]), scale_param_m2);
} }
for (qs = 3; qs < resHybIndex; qs++) { for (qs = 3; qs < resHybIndex; qs++) {
pHybOutRealDry[qs] -= fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutRealDry[qs] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
pHybOutImagDry[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutImagDry[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
} }
/* decor signals */ /* decor signals */
for (; qs < complexHybBands; qs++) { for (; qs < complexHybBands; qs++) {
pHybOutRealWet[qs] -= fMultDiv2(pWImag[qs], pKernel[qs]) pHybOutRealWet[qs] -= SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWImag[qs], pKernel[qs]), scale_param_m2);
pHybOutImagWet[qs] += fMultDiv2(pWReal[qs], pKernel[qs]) pHybOutImagWet[qs] += SAC_DEC_APPLY_M2_SCALE(
<< (scale_param_m2); fMultDiv2(pWReal[qs], pKernel[qs]), scale_param_m2);
} }
} /* self->upmixType */ } /* self->upmixType */
} /* if (activParamBands) { */ } /* if (activParamBands) { */
} /* self->numVChannels */ } /* self->numVChannels */
if (self->phaseCoding == 3) {
scaleValuesSaturate(pHybOutRealDry, complexHybBands,
SCALE_PARAM_M2_212_PRED + SCALE_DATA_APPLY_M2_PC);
scaleValuesSaturate(pHybOutImagDry, complexHybBands,
SCALE_PARAM_M2_212_PRED + SCALE_DATA_APPLY_M2_PC);
if (!toolsDisabled) {
scaleValuesSaturate(pHybOutRealWet, complexHybBands,
SCALE_PARAM_M2_212_PRED + SCALE_DATA_APPLY_M2_PC);
scaleValuesSaturate(pHybOutImagWet, complexHybBands,
SCALE_PARAM_M2_212_PRED + SCALE_DATA_APPLY_M2_PC);
}
}
} }
C_ALLOC_SCRATCH_END(pKernel, FIXP_SGL, MAX_HYBRID_BANDS); C_ALLOC_SCRATCH_END(pKernel, FIXP_SGL, MAX_HYBRID_BANDS);