2012-07-11 10:15:24 -07:00
|
|
|
|
|
|
|
|
|
/* -----------------------------------------------------------------------------------------------------------
|
|
|
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
<EFBFBD> Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur F<EFBFBD>rderung der angewandten Forschung e.V.
|
2012-07-11 10:15:24 -07:00
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
|
|
1. INTRODUCTION
|
|
|
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
|
|
|
|
|
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
|
|
|
|
|
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
|
|
|
|
|
|
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
|
|
|
|
|
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
|
|
|
|
|
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
|
|
|
|
|
of the MPEG specifications.
|
|
|
|
|
|
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
|
|
|
|
|
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
|
|
|
|
|
individually for the purpose of encoding or decoding bit streams in products that are compliant with
|
|
|
|
|
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
|
|
|
|
|
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
|
|
|
|
|
software may already be covered under those patent licenses when it is used for those licensed purposes only.
|
|
|
|
|
|
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
|
|
|
|
|
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
|
|
|
|
|
applications information and documentation.
|
|
|
|
|
|
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted without
|
|
|
|
|
payment of copyright license fees provided that you satisfy the following conditions:
|
|
|
|
|
|
|
|
|
|
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
|
|
|
|
|
your modifications thereto in source code form.
|
|
|
|
|
|
|
|
|
|
You must retain the complete text of this software license in the documentation and/or other materials
|
|
|
|
|
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
|
|
|
|
|
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
|
|
|
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
|
|
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
|
|
|
|
|
prior written permission.
|
|
|
|
|
|
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
|
|
|
|
|
software or your modifications thereto.
|
|
|
|
|
|
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
|
|
|
|
|
and the date of any change. For modified versions of the FDK AAC Codec, the term
|
|
|
|
|
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
|
|
|
|
|
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
|
|
|
|
|
|
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
|
|
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
|
|
|
|
|
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
|
|
|
|
|
respect to this software.
|
|
|
|
|
|
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
|
|
|
|
|
by appropriate patent licenses.
|
|
|
|
|
|
|
|
|
|
4. DISCLAIMER
|
|
|
|
|
|
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
|
|
|
|
|
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
|
|
|
|
|
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
|
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
|
|
|
|
|
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
|
|
|
|
|
or business interruption, however caused and on any theory of liability, whether in contract, strict
|
|
|
|
|
liability, or tort (including negligence), arising in any way out of the use of this software, even if
|
|
|
|
|
advised of the possibility of such damage.
|
|
|
|
|
|
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
|
|
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
|
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
|
|
|
Am Wolfsmantel 33
|
|
|
|
|
91058 Erlangen, Germany
|
|
|
|
|
|
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
|
|
|
amm-info@iis.fraunhofer.de
|
|
|
|
|
----------------------------------------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\file
|
|
|
|
|
\brief Envelope calculation
|
|
|
|
|
|
|
|
|
|
The envelope adjustor compares the energies present in the transposed
|
|
|
|
|
highband to the reference energies conveyed with the bitstream.
|
|
|
|
|
The highband is amplified (sometimes) or attenuated (mostly) to the
|
|
|
|
|
desired level.
|
|
|
|
|
|
|
|
|
|
The spectral shape of the reference energies can be changed several times per
|
|
|
|
|
frame if necessary. Each set of energy values corresponding to a certain range
|
|
|
|
|
in time will be called an <em>envelope</em> here.
|
|
|
|
|
The bitstream supports several frequency scales and two resolutions. Normally,
|
|
|
|
|
one or more QMF-subbands are grouped to one SBR-band. An envelope contains
|
|
|
|
|
reference energies for each SBR-band.
|
|
|
|
|
In addition to the energy envelopes, noise envelopes are transmitted that
|
|
|
|
|
define the ratio of energy which is generated by adding noise instead of
|
|
|
|
|
transposing the lowband. The noise envelopes are given in a coarser time
|
|
|
|
|
and frequency resolution.
|
|
|
|
|
If a signal contains strong tonal components, synthetic sines can be
|
|
|
|
|
generated in individual SBR bands.
|
|
|
|
|
|
|
|
|
|
An overlap buffer of 6 QMF-timeslots is used to allow a more
|
|
|
|
|
flexible alignment of the envelopes in time that is not restricted to the
|
|
|
|
|
core codec's frame borders.
|
|
|
|
|
Therefore the envelope adjustor has access to the spectral data of the
|
|
|
|
|
current frame as well as the last 6 QMF-timeslots of the previous frame.
|
|
|
|
|
However, in average only the data of 1 frame is being processed as
|
|
|
|
|
the adjustor is called once per frame.
|
|
|
|
|
|
|
|
|
|
Depending on the frequency range set in the bitstream, only QMF-subbands between
|
|
|
|
|
<em>lowSubband</em> and <em>highSubband</em> are adjusted.
|
|
|
|
|
|
|
|
|
|
Scaling of spectral data to maximize SNR (see #QMF_SCALE_FACTOR) as well as a special Mantissa-Exponent format
|
|
|
|
|
( see calculateSbrEnvelope() ) are being used. The main entry point for this modules is calculateSbrEnvelope().
|
|
|
|
|
|
|
|
|
|
\sa sbr_scale.h, #QMF_SCALE_FACTOR, calculateSbrEnvelope(), \ref documentationOverview
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "env_calc.h"
|
|
|
|
|
|
|
|
|
|
#include "sbrdec_freq_sca.h"
|
|
|
|
|
#include "env_extr.h"
|
|
|
|
|
#include "transcendent.h"
|
|
|
|
|
#include "sbr_ram.h"
|
|
|
|
|
#include "sbr_rom.h"
|
|
|
|
|
|
|
|
|
|
#include "genericStds.h" /* need FDKpow() for debug outputs */
|
|
|
|
|
|
|
|
|
|
#if defined(__arm__)
|
|
|
|
|
#include "arm/env_calc_arm.cpp"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL nrgRef[MAX_FREQ_COEFFS];
|
|
|
|
|
FIXP_DBL nrgEst[MAX_FREQ_COEFFS];
|
|
|
|
|
FIXP_DBL nrgGain[MAX_FREQ_COEFFS];
|
|
|
|
|
FIXP_DBL noiseLevel[MAX_FREQ_COEFFS];
|
|
|
|
|
FIXP_DBL nrgSine[MAX_FREQ_COEFFS];
|
|
|
|
|
|
|
|
|
|
SCHAR nrgRef_e[MAX_FREQ_COEFFS];
|
|
|
|
|
SCHAR nrgEst_e[MAX_FREQ_COEFFS];
|
|
|
|
|
SCHAR nrgGain_e[MAX_FREQ_COEFFS];
|
|
|
|
|
SCHAR noiseLevel_e[MAX_FREQ_COEFFS];
|
|
|
|
|
SCHAR nrgSine_e[MAX_FREQ_COEFFS];
|
|
|
|
|
}
|
|
|
|
|
ENV_CALC_NRGS;
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void equalizeFiltBufferExp(FIXP_DBL *filtBuffer,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
SCHAR *filtBuffer_e,
|
|
|
|
|
FIXP_DBL *NrgGain,
|
|
|
|
|
SCHAR *NrgGain_e,
|
|
|
|
|
int subbands);
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcNrgPerSubband(FIXP_DBL **analysBufferReal,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL **analysBufferImag,
|
|
|
|
|
int lowSubband, int highSubband,
|
|
|
|
|
int start_pos, int next_pos,
|
|
|
|
|
SCHAR frameExp,
|
|
|
|
|
FIXP_DBL *nrgEst,
|
|
|
|
|
SCHAR *nrgEst_e );
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcNrgPerSfb(FIXP_DBL **analysBufferReal,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL **analysBufferImag,
|
|
|
|
|
int nSfb,
|
|
|
|
|
UCHAR *freqBandTable,
|
|
|
|
|
int start_pos, int next_pos,
|
|
|
|
|
SCHAR input_e,
|
|
|
|
|
FIXP_DBL *nrg_est,
|
|
|
|
|
SCHAR *nrg_est_e );
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcSubbandGain(FIXP_DBL nrgRef, SCHAR nrgRef_e, ENV_CALC_NRGS* nrgs, int c,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL tmpNoise, SCHAR tmpNoise_e,
|
|
|
|
|
UCHAR sinePresentFlag,
|
|
|
|
|
UCHAR sineMapped,
|
|
|
|
|
int noNoiseFlag);
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcAvgGain(ENV_CALC_NRGS* nrgs,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
int lowSubband,
|
|
|
|
|
int highSubband,
|
|
|
|
|
FIXP_DBL *sumRef_m,
|
|
|
|
|
SCHAR *sumRef_e,
|
|
|
|
|
FIXP_DBL *ptrAvgGain_m,
|
|
|
|
|
SCHAR *ptrAvgGain_e);
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void adjustTimeSlot_EldGrid(FIXP_DBL *ptrReal,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
UCHAR *ptrHarmIndex,
|
|
|
|
|
int lowSubbands,
|
|
|
|
|
int noSubbands,
|
|
|
|
|
int scale_change,
|
|
|
|
|
int noNoiseFlag,
|
|
|
|
|
int *ptrPhaseIndex,
|
2016-04-08 12:05:12 -07:00
|
|
|
|
int scale_diff_low);
|
|
|
|
|
|
|
|
|
|
static void adjustTimeSlotLC(FIXP_DBL *ptrReal,
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
UCHAR *ptrHarmIndex,
|
|
|
|
|
int lowSubbands,
|
|
|
|
|
int noSubbands,
|
|
|
|
|
int scale_change,
|
|
|
|
|
int noNoiseFlag,
|
|
|
|
|
int *ptrPhaseIndex);
|
|
|
|
|
static void adjustTimeSlotHQ(FIXP_DBL *ptrReal,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL *ptrImag,
|
|
|
|
|
HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env,
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
int lowSubbands,
|
|
|
|
|
int noSubbands,
|
|
|
|
|
int scale_change,
|
|
|
|
|
FIXP_SGL smooth_ratio,
|
|
|
|
|
int noNoiseFlag,
|
|
|
|
|
int filtBufferNoiseShift);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Map sine flags from bitstream to QMF bands
|
|
|
|
|
|
|
|
|
|
The bitstream carries only 1 sine flag per band and frame.
|
|
|
|
|
This function maps every sine flag from the bitstream to a specific QMF subband
|
|
|
|
|
and to a specific envelope where the sine shall start.
|
|
|
|
|
The result is stored in the vector sineMapped which contains one entry per
|
|
|
|
|
QMF subband. The value of an entry specifies the envelope where a sine
|
|
|
|
|
shall start. A value of #MAX_ENVELOPES indicates that no sine is present
|
|
|
|
|
in the subband.
|
|
|
|
|
The missing harmonics flags from the previous frame (harmFlagsPrev) determine
|
|
|
|
|
if a sine starts at the beginning of the frame or at the transient position.
|
|
|
|
|
Additionally, the flags in harmFlagsPrev are being updated by this function
|
|
|
|
|
for the next frame.
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void mapSineFlags(UCHAR *freqBandTable, /*!< Band borders (there's only 1 flag per band) */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
int nSfb, /*!< Number of bands in the table */
|
|
|
|
|
UCHAR *addHarmonics, /*!< vector with 1 flag per sfb */
|
|
|
|
|
int *harmFlagsPrev, /*!< Packed 'addHarmonics' */
|
|
|
|
|
int tranEnv, /*!< Transient position */
|
|
|
|
|
SCHAR *sineMapped) /*!< Resulting vector of sine start positions for each QMF band */
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
int lowSubband2 = freqBandTable[0]<<1;
|
|
|
|
|
int bitcount = 0;
|
|
|
|
|
int oldflags = *harmFlagsPrev;
|
|
|
|
|
int newflags = 0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Format of harmFlagsPrev:
|
|
|
|
|
|
|
|
|
|
first word = flags for highest 16 sfb bands in use
|
|
|
|
|
second word = flags for next lower 16 sfb bands (if present)
|
|
|
|
|
third word = flags for lowest 16 sfb bands (if present)
|
|
|
|
|
|
|
|
|
|
Up to MAX_FREQ_COEFFS sfb bands can be flagged for a sign.
|
|
|
|
|
The lowest bit of the first word corresponds to the _highest_ sfb band in use.
|
|
|
|
|
This is ensures that each flag is mapped to the same QMF band even after a
|
|
|
|
|
change of the crossover-frequency.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Reset the output vector first */
|
|
|
|
|
FDKmemset(sineMapped, MAX_ENVELOPES,MAX_FREQ_COEFFS); /* MAX_ENVELOPES means 'no sine' */
|
|
|
|
|
|
|
|
|
|
freqBandTable += nSfb;
|
|
|
|
|
addHarmonics += nSfb-1;
|
|
|
|
|
|
|
|
|
|
for (i=nSfb; i!=0; i--) {
|
|
|
|
|
int ui = *freqBandTable--; /* Upper limit of the current scale factor band. */
|
|
|
|
|
int li = *freqBandTable; /* Lower limit of the current scale factor band. */
|
|
|
|
|
|
|
|
|
|
if ( *addHarmonics-- ) { /* There is a sine in this band */
|
|
|
|
|
|
|
|
|
|
unsigned int mask = 1 << bitcount;
|
|
|
|
|
newflags |= mask; /* Set flag */
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
If there was a sine in the last frame, let it continue from the first envelope on
|
|
|
|
|
else start at the transient position.
|
|
|
|
|
*/
|
|
|
|
|
sineMapped[(ui+li-lowSubband2) >> 1] = ( oldflags & mask ) ? 0 : tranEnv;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((++bitcount == 16) || i==1) {
|
|
|
|
|
bitcount = 0;
|
|
|
|
|
*harmFlagsPrev++ = newflags;
|
|
|
|
|
oldflags = *harmFlagsPrev; /* Fetch 16 of the old flags */
|
|
|
|
|
newflags = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Reduce gain-adjustment induced aliasing for real valued filterbank.
|
|
|
|
|
*/
|
|
|
|
|
/*static*/ void
|
|
|
|
|
aliasingReduction(FIXP_DBL* degreeAlias, /*!< estimated aliasing for each QMF channel */
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
int* useAliasReduction, /*!< synthetic sine engergy for each subband, used as flag */
|
|
|
|
|
int noSubbands) /*!< number of QMF channels to process */
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL* nrgGain = nrgs->nrgGain; /*!< subband gains to be modified */
|
|
|
|
|
SCHAR* nrgGain_e = nrgs->nrgGain_e; /*!< subband gains to be modified (exponents) */
|
|
|
|
|
FIXP_DBL* nrgEst = nrgs->nrgEst; /*!< subband energy before amplification */
|
|
|
|
|
SCHAR* nrgEst_e = nrgs->nrgEst_e; /*!< subband energy before amplification (exponents) */
|
|
|
|
|
int grouping = 0, index = 0, noGroups, k;
|
|
|
|
|
int groupVector[MAX_FREQ_COEFFS];
|
|
|
|
|
|
|
|
|
|
/* Calculate grouping*/
|
|
|
|
|
for (k = 0; k < noSubbands-1; k++ ){
|
|
|
|
|
if ( (degreeAlias[k + 1] != FL2FXCONST_DBL(0.0f)) && useAliasReduction[k] ) {
|
|
|
|
|
if(grouping==0){
|
|
|
|
|
groupVector[index++] = k;
|
|
|
|
|
grouping = 1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
if(groupVector[index-1] + 3 == k){
|
|
|
|
|
groupVector[index++] = k + 1;
|
|
|
|
|
grouping = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
if(grouping){
|
|
|
|
|
if(useAliasReduction[k])
|
|
|
|
|
groupVector[index++] = k + 1;
|
|
|
|
|
else
|
|
|
|
|
groupVector[index++] = k;
|
|
|
|
|
grouping = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(grouping){
|
|
|
|
|
groupVector[index++] = noSubbands;
|
|
|
|
|
}
|
|
|
|
|
noGroups = index >> 1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*Calculate new gain*/
|
|
|
|
|
for (int group = 0; group < noGroups; group ++) {
|
|
|
|
|
FIXP_DBL nrgOrig = FL2FXCONST_DBL(0.0f); /* Original signal energy in current group of bands */
|
|
|
|
|
SCHAR nrgOrig_e = 0;
|
|
|
|
|
FIXP_DBL nrgAmp = FL2FXCONST_DBL(0.0f); /* Amplified signal energy in group (using current gains) */
|
|
|
|
|
SCHAR nrgAmp_e = 0;
|
|
|
|
|
FIXP_DBL nrgMod = FL2FXCONST_DBL(0.0f); /* Signal energy in group when applying modified gains */
|
|
|
|
|
SCHAR nrgMod_e = 0;
|
|
|
|
|
FIXP_DBL groupGain; /* Total energy gain in group */
|
|
|
|
|
SCHAR groupGain_e;
|
|
|
|
|
FIXP_DBL compensation; /* Compensation factor for the energy change when applying modified gains */
|
|
|
|
|
SCHAR compensation_e;
|
|
|
|
|
|
|
|
|
|
int startGroup = groupVector[2*group];
|
|
|
|
|
int stopGroup = groupVector[2*group+1];
|
|
|
|
|
|
|
|
|
|
/* Calculate total energy in group before and after amplification with current gains: */
|
|
|
|
|
for(k = startGroup; k < stopGroup; k++){
|
|
|
|
|
/* Get original band energy */
|
|
|
|
|
FIXP_DBL tmp = nrgEst[k];
|
|
|
|
|
SCHAR tmp_e = nrgEst_e[k];
|
|
|
|
|
|
|
|
|
|
FDK_add_MantExp(tmp, tmp_e, nrgOrig, nrgOrig_e, &nrgOrig, &nrgOrig_e);
|
|
|
|
|
|
|
|
|
|
/* Multiply band energy with current gain */
|
|
|
|
|
tmp = fMult(tmp,nrgGain[k]);
|
|
|
|
|
tmp_e = tmp_e + nrgGain_e[k];
|
|
|
|
|
|
|
|
|
|
FDK_add_MantExp(tmp, tmp_e, nrgAmp, nrgAmp_e, &nrgAmp, &nrgAmp_e);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Calculate total energy gain in group */
|
|
|
|
|
FDK_divide_MantExp(nrgAmp, nrgAmp_e,
|
|
|
|
|
nrgOrig, nrgOrig_e,
|
|
|
|
|
&groupGain, &groupGain_e);
|
|
|
|
|
|
|
|
|
|
for(k = startGroup; k < stopGroup; k++){
|
|
|
|
|
FIXP_DBL tmp;
|
|
|
|
|
SCHAR tmp_e;
|
|
|
|
|
|
|
|
|
|
FIXP_DBL alpha = degreeAlias[k];
|
|
|
|
|
if (k < noSubbands - 1) {
|
|
|
|
|
if (degreeAlias[k + 1] > alpha)
|
|
|
|
|
alpha = degreeAlias[k + 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Modify gain depending on the degree of aliasing */
|
|
|
|
|
FDK_add_MantExp( fMult(alpha,groupGain), groupGain_e,
|
|
|
|
|
fMult(/*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL - alpha,nrgGain[k]), nrgGain_e[k],
|
|
|
|
|
&nrgGain[k], &nrgGain_e[k] );
|
|
|
|
|
|
|
|
|
|
/* Apply modified gain to original energy */
|
|
|
|
|
tmp = fMult(nrgGain[k],nrgEst[k]);
|
|
|
|
|
tmp_e = nrgGain_e[k] + nrgEst_e[k];
|
|
|
|
|
|
|
|
|
|
/* Accumulate energy with modified gains applied */
|
|
|
|
|
FDK_add_MantExp( tmp, tmp_e,
|
|
|
|
|
nrgMod, nrgMod_e,
|
|
|
|
|
&nrgMod, &nrgMod_e );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Calculate compensation factor to retain the energy of the amplified signal */
|
|
|
|
|
FDK_divide_MantExp(nrgAmp, nrgAmp_e,
|
|
|
|
|
nrgMod, nrgMod_e,
|
|
|
|
|
&compensation, &compensation_e);
|
|
|
|
|
|
|
|
|
|
/* Apply compensation factor to all gains of the group */
|
|
|
|
|
for(k = startGroup; k < stopGroup; k++){
|
|
|
|
|
nrgGain[k] = fMult(nrgGain[k],compensation);
|
|
|
|
|
nrgGain_e[k] = nrgGain_e[k] + compensation_e;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Convert headroom bits to exponent */
|
|
|
|
|
#define SCALE2EXP(s) (15-(s))
|
|
|
|
|
#define EXP2SCALE(e) (15-(e))
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Apply spectral envelope to subband samples
|
|
|
|
|
|
|
|
|
|
This function is called from sbr_dec.cpp in each frame.
|
|
|
|
|
|
|
|
|
|
To enhance accuracy and due to the usage of tables for squareroots and
|
|
|
|
|
inverse, some calculations are performed with the operands being split
|
|
|
|
|
into mantissa and exponent. The variable names in the source code carry
|
|
|
|
|
the suffixes <em>_m</em> and <em>_e</em> respectively. The control data
|
|
|
|
|
in #hFrameData containts envelope data which is represented by this format but
|
|
|
|
|
stored in single words. (See requantizeEnvelopeData() for details). This data
|
|
|
|
|
is unpacked within calculateSbrEnvelope() to follow the described suffix convention.
|
|
|
|
|
|
|
|
|
|
The actual value (comparable to the corresponding float-variable in the
|
|
|
|
|
research-implementation) of a mantissa/exponent-pair can be calculated as
|
|
|
|
|
|
|
|
|
|
\f$ value = value\_m * 2^{value\_e} \f$
|
|
|
|
|
|
|
|
|
|
All energies and noise levels decoded from the bitstream suit for an
|
|
|
|
|
original signal magnitude of \f$\pm 32768 \f$ rather than \f$ \pm 1\f$. Therefore,
|
|
|
|
|
the scale factor <em>hb_scale</em> passed into this function will be converted
|
|
|
|
|
to an 'input exponent' (#input_e), which fits the internal representation.
|
|
|
|
|
|
|
|
|
|
Before the actual processing, an exponent #adj_e for resulting adjusted
|
|
|
|
|
samples is derived from the maximum reference energy.
|
|
|
|
|
|
|
|
|
|
Then, for each envelope, the following steps are performed:
|
|
|
|
|
|
|
|
|
|
\li Calculate energy in the signal to be adjusted. Depending on the the value of
|
|
|
|
|
#interpolFreq (interpolation mode), this is either done seperately
|
|
|
|
|
for each QMF-subband or for each SBR-band.
|
|
|
|
|
The resulting energies are stored in #nrgEst_m[#MAX_FREQ_COEFFS] (mantissas)
|
|
|
|
|
and #nrgEst_e[#MAX_FREQ_COEFFS] (exponents).
|
|
|
|
|
\li Calculate gain and noise level for each subband:<br>
|
|
|
|
|
\f$ gain = \sqrt{ \frac{nrgRef}{nrgEst} \cdot (1 - noiseRatio) }
|
|
|
|
|
\hspace{2cm}
|
|
|
|
|
noise = \sqrt{ nrgRef \cdot noiseRatio }
|
|
|
|
|
\f$<br>
|
|
|
|
|
where <em>noiseRatio</em> and <em>nrgRef</em> are extracted from the
|
|
|
|
|
bitstream and <em>nrgEst</em> is the subband energy before adjustment.
|
|
|
|
|
The resulting gains are stored in #nrgGain_m[#MAX_FREQ_COEFFS]
|
|
|
|
|
(mantissas) and #nrgGain_e[#MAX_FREQ_COEFFS] (exponents), the noise levels
|
|
|
|
|
are stored in #noiseLevel_m[#MAX_FREQ_COEFFS] and #noiseLevel_e[#MAX_FREQ_COEFFS]
|
|
|
|
|
(exponents).
|
|
|
|
|
The sine levels are stored in #nrgSine_m[#MAX_FREQ_COEFFS]
|
|
|
|
|
and #nrgSine_e[#MAX_FREQ_COEFFS].
|
|
|
|
|
\li Noise limiting: The gain for each subband is limited both absolutely
|
|
|
|
|
and relatively compared to the total gain over all subbands.
|
|
|
|
|
\li Boost gain: Calculate and apply boost factor for each limiter band
|
|
|
|
|
in order to compensate for the energy loss imposed by the limiting.
|
|
|
|
|
\li Apply gains and add noise: The gains and noise levels are applied
|
|
|
|
|
to all timeslots of the current envelope. A short FIR-filter (length 4
|
|
|
|
|
QMF-timeslots) can be used to smooth the sudden change at the envelope borders.
|
|
|
|
|
Each complex subband sample of the current timeslot is multiplied by the
|
|
|
|
|
smoothed gain, then random noise with the calculated level is added.
|
|
|
|
|
|
|
|
|
|
\note
|
|
|
|
|
To reduce the stack size, some of the local arrays could be located within
|
|
|
|
|
the time output buffer. Of the 512 samples temporarily available there,
|
|
|
|
|
about half the size is already used by #SBR_FRAME_DATA. A pointer to the
|
|
|
|
|
remaining free memory could be supplied by an additional argument to calculateSbrEnvelope()
|
|
|
|
|
in sbr_dec:
|
|
|
|
|
|
|
|
|
|
\par
|
|
|
|
|
\code
|
|
|
|
|
calculateSbrEnvelope (&hSbrDec->sbrScaleFactor,
|
|
|
|
|
&hSbrDec->SbrCalculateEnvelope,
|
|
|
|
|
hHeaderData,
|
|
|
|
|
hFrameData,
|
|
|
|
|
QmfBufferReal,
|
|
|
|
|
QmfBufferImag,
|
|
|
|
|
timeOutPtr + sizeof(SBR_FRAME_DATA)/sizeof(Float) + 1);
|
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
|
|
\par
|
|
|
|
|
Within calculateSbrEnvelope(), some pointers could be defined instead of the arrays
|
|
|
|
|
#nrgRef_m, #nrgRef_e, #nrgEst_m, #nrgEst_e, #noiseLevel_m:
|
|
|
|
|
|
|
|
|
|
\par
|
|
|
|
|
\code
|
|
|
|
|
fract* nrgRef_m = timeOutPtr;
|
|
|
|
|
SCHAR* nrgRef_e = nrgRef_m + MAX_FREQ_COEFFS;
|
|
|
|
|
fract* nrgEst_m = nrgRef_e + MAX_FREQ_COEFFS;
|
|
|
|
|
SCHAR* nrgEst_e = nrgEst_m + MAX_FREQ_COEFFS;
|
|
|
|
|
fract* noiseLevel_m = nrgEst_e + MAX_FREQ_COEFFS;
|
|
|
|
|
\endcode
|
|
|
|
|
|
|
|
|
|
<br>
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
calculateSbrEnvelope (QMF_SCALE_FACTOR *sbrScaleFactor, /*!< Scaling factors */
|
|
|
|
|
HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, /*!< Handle to struct filled by the create-function */
|
|
|
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
|
|
|
|
|
HANDLE_SBR_FRAME_DATA hFrameData, /*!< Control data of current frame */
|
|
|
|
|
FIXP_DBL **analysBufferReal, /*!< Real part of subband samples to be processed */
|
|
|
|
|
FIXP_DBL **analysBufferImag, /*!< Imag part of subband samples to be processed */
|
|
|
|
|
const int useLP,
|
|
|
|
|
FIXP_DBL *degreeAlias, /*!< Estimated aliasing for each QMF channel */
|
|
|
|
|
const UINT flags,
|
|
|
|
|
const int frameErrorFlag
|
|
|
|
|
)
|
|
|
|
|
{
|
|
|
|
|
int c, i, j, envNoise = 0;
|
|
|
|
|
UCHAR* borders = hFrameData->frameInfo.borders;
|
|
|
|
|
|
|
|
|
|
FIXP_SGL *noiseLevels = hFrameData->sbrNoiseFloorLevel;
|
|
|
|
|
HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
|
|
|
|
|
|
|
|
|
|
int lowSubband = hFreq->lowSubband;
|
|
|
|
|
int highSubband = hFreq->highSubband;
|
|
|
|
|
int noSubbands = highSubband - lowSubband;
|
|
|
|
|
|
|
|
|
|
int noNoiseBands = hFreq->nNfb;
|
|
|
|
|
int no_cols = hHeaderData->numberTimeSlots * hHeaderData->timeStep;
|
|
|
|
|
UCHAR first_start = borders[0] * hHeaderData->timeStep;
|
|
|
|
|
|
|
|
|
|
SCHAR sineMapped[MAX_FREQ_COEFFS];
|
|
|
|
|
SCHAR ov_adj_e = SCALE2EXP(sbrScaleFactor->ov_hb_scale);
|
|
|
|
|
SCHAR adj_e = 0;
|
|
|
|
|
SCHAR output_e;
|
|
|
|
|
SCHAR final_e = 0;
|
|
|
|
|
|
|
|
|
|
SCHAR maxGainLimit_e = (frameErrorFlag) ? MAX_GAIN_CONCEAL_EXP : MAX_GAIN_EXP;
|
|
|
|
|
|
|
|
|
|
int useAliasReduction[64];
|
|
|
|
|
UCHAR smooth_length = 0;
|
|
|
|
|
|
|
|
|
|
FIXP_SGL * pIenv = hFrameData->iEnvelope;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Extract sine flags for all QMF bands
|
|
|
|
|
*/
|
|
|
|
|
mapSineFlags(hFreq->freqBandTable[1],
|
|
|
|
|
hFreq->nSfb[1],
|
|
|
|
|
hFrameData->addHarmonics,
|
|
|
|
|
h_sbr_cal_env->harmFlagsPrev,
|
|
|
|
|
hFrameData->frameInfo.tranEnv,
|
|
|
|
|
sineMapped);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Scan for maximum in bufferd noise levels.
|
|
|
|
|
This is needed in case that we had strong noise in the previous frame
|
|
|
|
|
which is smoothed into the current frame.
|
|
|
|
|
The resulting exponent is used as start value for the maximum search
|
|
|
|
|
in reference energies
|
|
|
|
|
*/
|
|
|
|
|
if (!useLP)
|
|
|
|
|
adj_e = h_sbr_cal_env->filtBufferNoise_e - getScalefactor(h_sbr_cal_env->filtBufferNoise, noSubbands);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Scan for maximum reference energy to be able
|
|
|
|
|
to select appropriate values for adj_e and final_e.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < hFrameData->frameInfo.nEnvelopes; i++) {
|
|
|
|
|
INT maxSfbNrg_e = -FRACT_BITS+NRG_EXP_OFFSET; /* start value for maximum search */
|
|
|
|
|
|
|
|
|
|
/* Fetch frequency resolution for current envelope: */
|
|
|
|
|
for (j=hFreq->nSfb[hFrameData->frameInfo.freqRes[i]]; j!=0; j--) {
|
|
|
|
|
maxSfbNrg_e = fixMax(maxSfbNrg_e,(INT)((LONG)(*pIenv++) & MASK_E));
|
|
|
|
|
}
|
|
|
|
|
maxSfbNrg_e -= NRG_EXP_OFFSET;
|
|
|
|
|
|
|
|
|
|
/* Energy -> magnitude (sqrt halfens exponent) */
|
|
|
|
|
maxSfbNrg_e = (maxSfbNrg_e+1) >> 1; /* +1 to go safe (round to next higher int) */
|
|
|
|
|
|
|
|
|
|
/* Some safety margin is needed for 2 reasons:
|
|
|
|
|
- The signal energy is not equally spread over all subband samples in
|
|
|
|
|
a specific sfb of an envelope (Nrg could be too high by a factor of
|
|
|
|
|
envWidth * sfbWidth)
|
|
|
|
|
- Smoothing can smear high gains of the previous envelope into the current
|
|
|
|
|
*/
|
|
|
|
|
maxSfbNrg_e += 6;
|
|
|
|
|
|
|
|
|
|
if (borders[i] < hHeaderData->numberTimeSlots)
|
|
|
|
|
/* This envelope affects timeslots that belong to the output frame */
|
|
|
|
|
adj_e = (maxSfbNrg_e > adj_e) ? maxSfbNrg_e : adj_e;
|
|
|
|
|
|
|
|
|
|
if (borders[i+1] > hHeaderData->numberTimeSlots)
|
|
|
|
|
/* This envelope affects timeslots after the output frame */
|
|
|
|
|
final_e = (maxSfbNrg_e > final_e) ? maxSfbNrg_e : final_e;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Calculate adjustment factors and apply them for every envelope.
|
|
|
|
|
*/
|
|
|
|
|
pIenv = hFrameData->iEnvelope;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < hFrameData->frameInfo.nEnvelopes; i++) {
|
|
|
|
|
|
|
|
|
|
int k, noNoiseFlag;
|
|
|
|
|
SCHAR noise_e, input_e = SCALE2EXP(sbrScaleFactor->hb_scale);
|
|
|
|
|
C_ALLOC_SCRATCH_START(pNrgs, ENV_CALC_NRGS, 1);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Helper variables.
|
|
|
|
|
*/
|
|
|
|
|
UCHAR start_pos = hHeaderData->timeStep * borders[i]; /* Start-position in time (subband sample) for current envelope. */
|
|
|
|
|
UCHAR stop_pos = hHeaderData->timeStep * borders[i+1]; /* Stop-position in time (subband sample) for current envelope. */
|
|
|
|
|
UCHAR freq_res = hFrameData->frameInfo.freqRes[i]; /* Frequency resolution for current envelope. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Always do fully initialize the temporary energy table. This prevents negative energies and extreme gain factors in
|
|
|
|
|
cases where the number of limiter bands exceeds the number of subbands. The latter can be caused by undetected bit
|
|
|
|
|
errors and is tested by some streams from the certification set. */
|
|
|
|
|
FDKmemclear(pNrgs, sizeof(ENV_CALC_NRGS));
|
|
|
|
|
|
|
|
|
|
/* If the start-pos of the current envelope equals the stop pos of the current
|
|
|
|
|
noise envelope, increase the pointer (i.e. choose the next noise-floor).*/
|
|
|
|
|
if (borders[i] == hFrameData->frameInfo.bordersNoise[envNoise+1]){
|
|
|
|
|
noiseLevels += noNoiseBands; /* The noise floor data is stored in a row [noiseFloor1 noiseFloor2...].*/
|
|
|
|
|
envNoise++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(i==hFrameData->frameInfo.tranEnv || i==h_sbr_cal_env->prevTranEnv) /* attack */
|
|
|
|
|
{
|
|
|
|
|
noNoiseFlag = 1;
|
|
|
|
|
if (!useLP)
|
|
|
|
|
smooth_length = 0; /* No smoothing on attacks! */
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
noNoiseFlag = 0;
|
|
|
|
|
if (!useLP)
|
|
|
|
|
smooth_length = (1 - hHeaderData->bs_data.smoothingLength) << 2; /* can become either 0 or 4 */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Energy estimation in transposed highband.
|
|
|
|
|
*/
|
|
|
|
|
if (hHeaderData->bs_data.interpolFreq)
|
|
|
|
|
calcNrgPerSubband(analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
lowSubband, highSubband,
|
|
|
|
|
start_pos, stop_pos,
|
|
|
|
|
input_e,
|
|
|
|
|
pNrgs->nrgEst,
|
|
|
|
|
pNrgs->nrgEst_e);
|
|
|
|
|
else
|
|
|
|
|
calcNrgPerSfb(analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
hFreq->nSfb[freq_res],
|
|
|
|
|
hFreq->freqBandTable[freq_res],
|
|
|
|
|
start_pos, stop_pos,
|
|
|
|
|
input_e,
|
|
|
|
|
pNrgs->nrgEst,
|
|
|
|
|
pNrgs->nrgEst_e);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Calculate subband gains
|
|
|
|
|
*/
|
|
|
|
|
{
|
|
|
|
|
UCHAR * table = hFreq->freqBandTable[freq_res];
|
|
|
|
|
UCHAR * pUiNoise = &hFreq->freqBandTableNoise[1]; /*! Upper limit of the current noise floor band. */
|
|
|
|
|
|
|
|
|
|
FIXP_SGL * pNoiseLevels = noiseLevels;
|
|
|
|
|
|
|
|
|
|
FIXP_DBL tmpNoise = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
|
|
|
|
|
SCHAR tmpNoise_e = (UCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;
|
|
|
|
|
|
|
|
|
|
int cc = 0;
|
|
|
|
|
c = 0;
|
|
|
|
|
for (j = 0; j < hFreq->nSfb[freq_res]; j++) {
|
|
|
|
|
|
|
|
|
|
FIXP_DBL refNrg = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pIenv) & MASK_M));
|
|
|
|
|
SCHAR refNrg_e = (SCHAR)((LONG)(*pIenv) & MASK_E) - NRG_EXP_OFFSET;
|
|
|
|
|
|
|
|
|
|
UCHAR sinePresentFlag = 0;
|
|
|
|
|
int li = table[j];
|
|
|
|
|
int ui = table[j+1];
|
|
|
|
|
|
|
|
|
|
for (k=li; k<ui; k++) {
|
|
|
|
|
sinePresentFlag |= (i >= sineMapped[cc]);
|
|
|
|
|
cc++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (k=li; k<ui; k++) {
|
|
|
|
|
if (k >= *pUiNoise) {
|
|
|
|
|
tmpNoise = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
|
|
|
|
|
tmpNoise_e = (SCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;
|
|
|
|
|
|
|
|
|
|
pUiNoise++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FDK_ASSERT(k >= lowSubband);
|
|
|
|
|
|
|
|
|
|
if (useLP)
|
|
|
|
|
useAliasReduction[k-lowSubband] = !sinePresentFlag;
|
|
|
|
|
|
|
|
|
|
pNrgs->nrgSine[c] = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
pNrgs->nrgSine_e[c] = 0;
|
|
|
|
|
|
|
|
|
|
calcSubbandGain(refNrg, refNrg_e, pNrgs, c,
|
|
|
|
|
tmpNoise, tmpNoise_e,
|
|
|
|
|
sinePresentFlag, i >= sineMapped[c],
|
|
|
|
|
noNoiseFlag);
|
|
|
|
|
|
|
|
|
|
pNrgs->nrgRef[c] = refNrg;
|
|
|
|
|
pNrgs->nrgRef_e[c] = refNrg_e;
|
|
|
|
|
|
|
|
|
|
c++;
|
|
|
|
|
}
|
|
|
|
|
pIenv++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Noise limiting
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
for (c = 0; c < hFreq->noLimiterBands; c++) {
|
|
|
|
|
|
|
|
|
|
FIXP_DBL sumRef, boostGain, maxGain;
|
|
|
|
|
FIXP_DBL accu = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
SCHAR sumRef_e, boostGain_e, maxGain_e, accu_e = 0;
|
|
|
|
|
|
|
|
|
|
calcAvgGain(pNrgs,
|
|
|
|
|
hFreq->limiterBandTable[c], hFreq->limiterBandTable[c+1],
|
|
|
|
|
&sumRef, &sumRef_e,
|
|
|
|
|
&maxGain, &maxGain_e);
|
|
|
|
|
|
|
|
|
|
/* Multiply maxGain with limiterGain: */
|
|
|
|
|
maxGain = fMult(maxGain, FDK_sbrDecoder_sbr_limGains_m[hHeaderData->bs_data.limiterGains]);
|
|
|
|
|
maxGain_e += FDK_sbrDecoder_sbr_limGains_e[hHeaderData->bs_data.limiterGains];
|
|
|
|
|
|
|
|
|
|
/* Scale mantissa of MaxGain into range between 0.5 and 1: */
|
|
|
|
|
if (maxGain == FL2FXCONST_DBL(0.0f))
|
|
|
|
|
maxGain_e = -FRACT_BITS;
|
|
|
|
|
else {
|
|
|
|
|
SCHAR charTemp = CountLeadingBits(maxGain);
|
|
|
|
|
maxGain_e -= charTemp;
|
|
|
|
|
maxGain <<= (int)charTemp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (maxGain_e >= maxGainLimit_e) { /* upper limit (e.g. 96 dB) */
|
|
|
|
|
maxGain = FL2FXCONST_DBL(0.5f);
|
|
|
|
|
maxGain_e = maxGainLimit_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Every subband gain is compared to the scaled "average gain"
|
|
|
|
|
and limited if necessary: */
|
|
|
|
|
for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c+1]; k++) {
|
|
|
|
|
if ( (pNrgs->nrgGain_e[k] > maxGain_e) || (pNrgs->nrgGain_e[k] == maxGain_e && pNrgs->nrgGain[k]>maxGain) ) {
|
|
|
|
|
|
|
|
|
|
FIXP_DBL noiseAmp;
|
|
|
|
|
SCHAR noiseAmp_e;
|
|
|
|
|
|
|
|
|
|
FDK_divide_MantExp(maxGain, maxGain_e, pNrgs->nrgGain[k], pNrgs->nrgGain_e[k], &noiseAmp, &noiseAmp_e);
|
|
|
|
|
pNrgs->noiseLevel[k] = fMult(pNrgs->noiseLevel[k],noiseAmp);
|
|
|
|
|
pNrgs->noiseLevel_e[k] += noiseAmp_e;
|
|
|
|
|
pNrgs->nrgGain[k] = maxGain;
|
|
|
|
|
pNrgs->nrgGain_e[k] = maxGain_e;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* -- Boost gain
|
|
|
|
|
Calculate and apply boost factor for each limiter band:
|
|
|
|
|
1. Check how much energy would be present when using the limited gain
|
|
|
|
|
2. Calculate boost factor by comparison with reference energy
|
|
|
|
|
3. Apply boost factor to compensate for the energy loss due to limiting
|
|
|
|
|
*/
|
|
|
|
|
for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1]; k++) {
|
|
|
|
|
|
|
|
|
|
/* 1.a Add energy of adjusted signal (using preliminary gain) */
|
|
|
|
|
FIXP_DBL tmp = fMult(pNrgs->nrgGain[k],pNrgs->nrgEst[k]);
|
|
|
|
|
SCHAR tmp_e = pNrgs->nrgGain_e[k] + pNrgs->nrgEst_e[k];
|
|
|
|
|
FDK_add_MantExp(tmp, tmp_e, accu, accu_e, &accu, &accu_e);
|
|
|
|
|
|
|
|
|
|
/* 1.b Add sine energy (if present) */
|
|
|
|
|
if(pNrgs->nrgSine[k] != FL2FXCONST_DBL(0.0f)) {
|
|
|
|
|
FDK_add_MantExp(pNrgs->nrgSine[k], pNrgs->nrgSine_e[k], accu, accu_e, &accu, &accu_e);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* 1.c Add noise energy (if present) */
|
|
|
|
|
if(noNoiseFlag == 0) {
|
|
|
|
|
FDK_add_MantExp(pNrgs->noiseLevel[k], pNrgs->noiseLevel_e[k], accu, accu_e, &accu, &accu_e);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 2.a Calculate ratio of wanted energy and accumulated energy */
|
|
|
|
|
if (accu == (FIXP_DBL)0) { /* If divisor is 0, limit quotient to +4 dB */
|
|
|
|
|
boostGain = FL2FXCONST_DBL(0.6279716f);
|
|
|
|
|
boostGain_e = 2;
|
|
|
|
|
} else {
|
|
|
|
|
INT div_e;
|
|
|
|
|
boostGain = fDivNorm(sumRef, accu, &div_e);
|
|
|
|
|
boostGain_e = sumRef_e - accu_e + div_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* 2.b Result too high? --> Limit the boost factor to +4 dB */
|
|
|
|
|
if((boostGain_e > 3) ||
|
|
|
|
|
(boostGain_e == 2 && boostGain > FL2FXCONST_DBL(0.6279716f)) ||
|
|
|
|
|
(boostGain_e == 3 && boostGain > FL2FXCONST_DBL(0.3139858f)) )
|
|
|
|
|
{
|
|
|
|
|
boostGain = FL2FXCONST_DBL(0.6279716f);
|
|
|
|
|
boostGain_e = 2;
|
|
|
|
|
}
|
|
|
|
|
/* 3. Multiply all signal components with the boost factor */
|
|
|
|
|
for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1]; k++) {
|
|
|
|
|
pNrgs->nrgGain[k] = fMultDiv2(pNrgs->nrgGain[k],boostGain);
|
|
|
|
|
pNrgs->nrgGain_e[k] = pNrgs->nrgGain_e[k] + boostGain_e + 1;
|
|
|
|
|
|
|
|
|
|
pNrgs->nrgSine[k] = fMultDiv2(pNrgs->nrgSine[k],boostGain);
|
|
|
|
|
pNrgs->nrgSine_e[k] = pNrgs->nrgSine_e[k] + boostGain_e + 1;
|
|
|
|
|
|
|
|
|
|
pNrgs->noiseLevel[k] = fMultDiv2(pNrgs->noiseLevel[k],boostGain);
|
|
|
|
|
pNrgs->noiseLevel_e[k] = pNrgs->noiseLevel_e[k] + boostGain_e + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* End of noise limiting */
|
|
|
|
|
|
|
|
|
|
if (useLP)
|
|
|
|
|
aliasingReduction(degreeAlias+lowSubband,
|
|
|
|
|
pNrgs,
|
|
|
|
|
useAliasReduction,
|
|
|
|
|
noSubbands);
|
|
|
|
|
|
|
|
|
|
/* For the timeslots within the range for the output frame,
|
|
|
|
|
use the same scale for the noise levels.
|
|
|
|
|
Drawback: If the envelope exceeds the frame border, the noise levels
|
|
|
|
|
will have to be rescaled later to fit final_e of
|
|
|
|
|
the gain-values.
|
|
|
|
|
*/
|
|
|
|
|
noise_e = (start_pos < no_cols) ? adj_e : final_e;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Convert energies to amplitude levels
|
|
|
|
|
*/
|
|
|
|
|
for (k=0; k<noSubbands; k++) {
|
|
|
|
|
FDK_sqrt_MantExp(&pNrgs->nrgSine[k], &pNrgs->nrgSine_e[k], &noise_e);
|
|
|
|
|
FDK_sqrt_MantExp(&pNrgs->nrgGain[k], &pNrgs->nrgGain_e[k], &pNrgs->nrgGain_e[k]);
|
|
|
|
|
FDK_sqrt_MantExp(&pNrgs->noiseLevel[k], &pNrgs->noiseLevel_e[k], &noise_e);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Apply calculated gains and adaptive noise
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* assembleHfSignals() */
|
|
|
|
|
{
|
|
|
|
|
int scale_change, sc_change;
|
|
|
|
|
FIXP_SGL smooth_ratio;
|
|
|
|
|
int filtBufferNoiseShift=0;
|
|
|
|
|
|
|
|
|
|
/* Initialize smoothing buffers with the first valid values */
|
|
|
|
|
if (h_sbr_cal_env->startUp)
|
|
|
|
|
{
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise_e = noise_e;
|
|
|
|
|
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBuffer_e, pNrgs->nrgGain_e, noSubbands*sizeof(SCHAR));
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel, noSubbands*sizeof(FIXP_DBL));
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBuffer, pNrgs->nrgGain, noSubbands*sizeof(FIXP_DBL));
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
h_sbr_cal_env->startUp = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
|
|
|
|
|
equalizeFiltBufferExp(h_sbr_cal_env->filtBuffer, /* buffered */
|
|
|
|
|
h_sbr_cal_env->filtBuffer_e, /* buffered */
|
|
|
|
|
pNrgs->nrgGain, /* current */
|
|
|
|
|
pNrgs->nrgGain_e, /* current */
|
|
|
|
|
noSubbands);
|
|
|
|
|
|
|
|
|
|
/* Adapt exponent of buffered noise levels to the current exponent
|
|
|
|
|
so they can easily be smoothed */
|
|
|
|
|
if((h_sbr_cal_env->filtBufferNoise_e - noise_e)>=0) {
|
|
|
|
|
int shift = fixMin(DFRACT_BITS-1,(int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
|
|
|
|
|
for (k=0; k<noSubbands; k++)
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise[k] <<= shift;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
int shift = fixMin(DFRACT_BITS-1,-(int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
|
|
|
|
|
for (k=0; k<noSubbands; k++)
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise[k] >>= shift;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise_e = noise_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* find best scaling! */
|
|
|
|
|
scale_change = -(DFRACT_BITS-1);
|
|
|
|
|
for(k=0;k<noSubbands;k++) {
|
|
|
|
|
scale_change = fixMax(scale_change,(int)pNrgs->nrgGain_e[k]);
|
|
|
|
|
}
|
|
|
|
|
sc_change = (start_pos<no_cols)? adj_e - input_e : final_e - input_e;
|
|
|
|
|
|
|
|
|
|
if ((scale_change-sc_change+1)<0)
|
|
|
|
|
scale_change-=(scale_change-sc_change+1);
|
|
|
|
|
|
|
|
|
|
scale_change = (scale_change-sc_change)+1;
|
|
|
|
|
|
|
|
|
|
for(k=0;k<noSubbands;k++) {
|
|
|
|
|
int sc = scale_change-pNrgs->nrgGain_e[k] + (sc_change-1);
|
|
|
|
|
pNrgs->nrgGain[k] >>= sc;
|
|
|
|
|
pNrgs->nrgGain_e[k] += sc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
for(k=0;k<noSubbands;k++) {
|
|
|
|
|
int sc = scale_change-h_sbr_cal_env->filtBuffer_e[k] + (sc_change-1);
|
|
|
|
|
h_sbr_cal_env->filtBuffer[k] >>= sc;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (j = start_pos; j < stop_pos; j++)
|
|
|
|
|
{
|
|
|
|
|
/* This timeslot is located within the first part of the processing buffer
|
|
|
|
|
and will be fed into the QMF-synthesis for the current frame.
|
|
|
|
|
adj_e - input_e
|
|
|
|
|
This timeslot will not yet be fed into the QMF so we do not care
|
|
|
|
|
about the adj_e.
|
|
|
|
|
sc_change = final_e - input_e
|
|
|
|
|
*/
|
|
|
|
|
if ( (j==no_cols) && (start_pos<no_cols) )
|
|
|
|
|
{
|
|
|
|
|
int shift = (int) (noise_e - final_e);
|
|
|
|
|
if (!useLP)
|
|
|
|
|
filtBufferNoiseShift = shift; /* shifting of h_sbr_cal_env->filtBufferNoise[k] will be applied in function adjustTimeSlotHQ() */
|
|
|
|
|
if (shift>=0) {
|
|
|
|
|
shift = fixMin(DFRACT_BITS-1,shift);
|
|
|
|
|
for (k=0; k<noSubbands; k++) {
|
|
|
|
|
pNrgs->nrgSine[k] <<= shift;
|
|
|
|
|
pNrgs->noiseLevel[k] <<= shift;
|
|
|
|
|
/*
|
|
|
|
|
if (!useLP)
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise[k] <<= shift;
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
shift = fixMin(DFRACT_BITS-1,-shift);
|
|
|
|
|
for (k=0; k<noSubbands; k++) {
|
|
|
|
|
pNrgs->nrgSine[k] >>= shift;
|
|
|
|
|
pNrgs->noiseLevel[k] >>= shift;
|
|
|
|
|
/*
|
|
|
|
|
if (!useLP)
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise[k] >>= shift;
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* update noise scaling */
|
|
|
|
|
noise_e = final_e;
|
|
|
|
|
if (!useLP)
|
|
|
|
|
h_sbr_cal_env->filtBufferNoise_e = noise_e; /* scaling value unused! */
|
|
|
|
|
|
|
|
|
|
/* update gain buffer*/
|
|
|
|
|
sc_change -= (final_e - input_e);
|
|
|
|
|
|
|
|
|
|
if (sc_change<0) {
|
|
|
|
|
for(k=0;k<noSubbands;k++) {
|
|
|
|
|
pNrgs->nrgGain[k] >>= -sc_change;
|
|
|
|
|
pNrgs->nrgGain_e[k] += -sc_change;
|
|
|
|
|
}
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
for(k=0;k<noSubbands;k++) {
|
|
|
|
|
h_sbr_cal_env->filtBuffer[k] >>= -sc_change;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
scale_change+=sc_change;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // if
|
|
|
|
|
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
|
|
|
|
|
/* Prevent the smoothing filter from running on constant levels */
|
|
|
|
|
if (j-start_pos < smooth_length)
|
|
|
|
|
smooth_ratio = FDK_sbrDecoder_sbr_smoothFilter[j-start_pos];
|
|
|
|
|
else
|
|
|
|
|
smooth_ratio = FL2FXCONST_SGL(0.0f);
|
|
|
|
|
|
|
|
|
|
adjustTimeSlotHQ(&analysBufferReal[j][lowSubband],
|
|
|
|
|
&analysBufferImag[j][lowSubband],
|
|
|
|
|
h_sbr_cal_env,
|
|
|
|
|
pNrgs,
|
|
|
|
|
lowSubband,
|
|
|
|
|
noSubbands,
|
|
|
|
|
scale_change,
|
|
|
|
|
smooth_ratio,
|
|
|
|
|
noNoiseFlag,
|
|
|
|
|
filtBufferNoiseShift);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2016-04-08 12:05:12 -07:00
|
|
|
|
if (flags & SBRDEC_ELD_GRID) {
|
|
|
|
|
adjustTimeSlot_EldGrid(&analysBufferReal[j][lowSubband],
|
2012-07-11 10:15:24 -07:00
|
|
|
|
pNrgs,
|
|
|
|
|
&h_sbr_cal_env->harmIndex,
|
|
|
|
|
lowSubband,
|
|
|
|
|
noSubbands,
|
|
|
|
|
scale_change,
|
|
|
|
|
noNoiseFlag,
|
|
|
|
|
&h_sbr_cal_env->phaseIndex,
|
2016-04-08 12:05:12 -07:00
|
|
|
|
EXP2SCALE(adj_e) - sbrScaleFactor->lb_scale);
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
adjustTimeSlotLC(&analysBufferReal[j][lowSubband],
|
|
|
|
|
pNrgs,
|
|
|
|
|
&h_sbr_cal_env->harmIndex,
|
|
|
|
|
lowSubband,
|
|
|
|
|
noSubbands,
|
|
|
|
|
scale_change,
|
|
|
|
|
noNoiseFlag,
|
|
|
|
|
&h_sbr_cal_env->phaseIndex);
|
|
|
|
|
}
|
2012-07-11 10:15:24 -07:00
|
|
|
|
}
|
|
|
|
|
} // for
|
|
|
|
|
|
|
|
|
|
if (!useLP) {
|
|
|
|
|
/* Update time-smoothing-buffers for gains and noise levels
|
|
|
|
|
The gains and the noise values of the current envelope are copied into the buffer.
|
|
|
|
|
This has to be done at the end of each envelope as the values are required for
|
|
|
|
|
a smooth transition to the next envelope. */
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBuffer, pNrgs->nrgGain, noSubbands*sizeof(FIXP_DBL));
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBuffer_e, pNrgs->nrgGain_e, noSubbands*sizeof(SCHAR));
|
|
|
|
|
FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel, noSubbands*sizeof(FIXP_DBL));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
C_ALLOC_SCRATCH_END(pNrgs, ENV_CALC_NRGS, 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Rescale output samples */
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL maxVal;
|
|
|
|
|
int ov_reserve, reserve;
|
|
|
|
|
|
|
|
|
|
/* Determine headroom in old adjusted samples */
|
|
|
|
|
maxVal = maxSubbandSample( analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
lowSubband,
|
|
|
|
|
highSubband,
|
|
|
|
|
0,
|
|
|
|
|
first_start);
|
|
|
|
|
|
|
|
|
|
ov_reserve = fNorm(maxVal);
|
|
|
|
|
|
|
|
|
|
/* Determine headroom in new adjusted samples */
|
|
|
|
|
maxVal = maxSubbandSample( analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
lowSubband,
|
|
|
|
|
highSubband,
|
|
|
|
|
first_start,
|
|
|
|
|
no_cols);
|
|
|
|
|
|
|
|
|
|
reserve = fNorm(maxVal);
|
|
|
|
|
|
|
|
|
|
/* Determine common output exponent */
|
|
|
|
|
if (ov_adj_e - ov_reserve > adj_e - reserve ) /* set output_e to the maximum */
|
|
|
|
|
output_e = ov_adj_e - ov_reserve;
|
|
|
|
|
else
|
|
|
|
|
output_e = adj_e - reserve;
|
|
|
|
|
|
|
|
|
|
/* Rescale old samples */
|
|
|
|
|
rescaleSubbandSamples( analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
lowSubband, highSubband,
|
|
|
|
|
0, first_start,
|
|
|
|
|
ov_adj_e - output_e);
|
|
|
|
|
|
|
|
|
|
/* Rescale new samples */
|
|
|
|
|
rescaleSubbandSamples( analysBufferReal,
|
|
|
|
|
(useLP) ? NULL : analysBufferImag,
|
|
|
|
|
lowSubband, highSubband,
|
|
|
|
|
first_start, no_cols,
|
|
|
|
|
adj_e - output_e);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update hb_scale */
|
|
|
|
|
sbrScaleFactor->hb_scale = EXP2SCALE(output_e);
|
|
|
|
|
|
|
|
|
|
/* Save the current final exponent for the next frame: */
|
|
|
|
|
sbrScaleFactor->ov_hb_scale = EXP2SCALE(final_e);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* We need to remeber to the next frame that the transient
|
|
|
|
|
will occur in the first envelope (if tranEnv == nEnvelopes). */
|
|
|
|
|
if(hFrameData->frameInfo.tranEnv == hFrameData->frameInfo.nEnvelopes)
|
|
|
|
|
h_sbr_cal_env->prevTranEnv = 0;
|
|
|
|
|
else
|
|
|
|
|
h_sbr_cal_env->prevTranEnv = -1;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Create envelope instance
|
|
|
|
|
|
|
|
|
|
Must be called once for each channel before calculateSbrEnvelope() can be used.
|
|
|
|
|
|
|
|
|
|
\return errorCode, 0 if successful
|
|
|
|
|
*/
|
|
|
|
|
SBR_ERROR
|
|
|
|
|
createSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hs, /*!< pointer to envelope instance */
|
|
|
|
|
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< static SBR control data, initialized with defaults */
|
|
|
|
|
const int chan, /*!< Channel for which to assign buffers */
|
|
|
|
|
const UINT flags)
|
|
|
|
|
{
|
|
|
|
|
SBR_ERROR err = SBRDEC_OK;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* Clear previous missing harmonics flags */
|
|
|
|
|
for (i=0; i<(MAX_FREQ_COEFFS+15)>>4; i++) {
|
|
|
|
|
hs->harmFlagsPrev[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
hs->harmIndex = 0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Setup pointers for time smoothing.
|
|
|
|
|
The buffer itself will be initialized later triggered by the startUp-flag.
|
|
|
|
|
*/
|
|
|
|
|
hs->prevTranEnv = -1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* initialization */
|
|
|
|
|
resetSbrEnvelopeCalc(hs);
|
|
|
|
|
|
|
|
|
|
if (chan==0) { /* do this only once */
|
|
|
|
|
err = resetFreqBandTables(hHeaderData, flags);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Create envelope instance
|
|
|
|
|
|
|
|
|
|
Must be called once for each channel before calculateSbrEnvelope() can be used.
|
|
|
|
|
|
|
|
|
|
\return errorCode, 0 if successful
|
|
|
|
|
*/
|
|
|
|
|
int
|
|
|
|
|
deleteSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hs)
|
|
|
|
|
{
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Reset envelope instance
|
|
|
|
|
|
|
|
|
|
This function must be called for each channel on a change of configuration.
|
|
|
|
|
Note that resetFreqBandTables should also be called in this case.
|
|
|
|
|
|
|
|
|
|
\return errorCode, 0 if successful
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
resetSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hCalEnv) /*!< pointer to envelope instance */
|
|
|
|
|
{
|
|
|
|
|
hCalEnv->phaseIndex = 0;
|
|
|
|
|
|
|
|
|
|
/* Noise exponent needs to be reset because the output exponent for the next frame depends on it */
|
|
|
|
|
hCalEnv->filtBufferNoise_e = 0;
|
|
|
|
|
|
|
|
|
|
hCalEnv->startUp = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Equalize exponents of the buffered gain values and the new ones
|
|
|
|
|
|
|
|
|
|
After equalization of exponents, the FIR-filter addition for smoothing
|
|
|
|
|
can be performed.
|
|
|
|
|
This function is called once for each envelope before adjusting.
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void equalizeFiltBufferExp(FIXP_DBL *filtBuffer, /*!< bufferd gains */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
SCHAR *filtBuffer_e, /*!< exponents of bufferd gains */
|
|
|
|
|
FIXP_DBL *nrgGain, /*!< gains for current envelope */
|
|
|
|
|
SCHAR *nrgGain_e, /*!< exponents of gains for current envelope */
|
|
|
|
|
int subbands) /*!< Number of QMF subbands */
|
|
|
|
|
{
|
|
|
|
|
int band;
|
|
|
|
|
int diff;
|
|
|
|
|
|
|
|
|
|
for (band=0; band<subbands; band++){
|
|
|
|
|
diff = (int) (nrgGain_e[band] - filtBuffer_e[band]);
|
|
|
|
|
if (diff>0) {
|
|
|
|
|
filtBuffer[band] >>= diff; /* Compensate for the scale change by shifting the mantissa. */
|
|
|
|
|
filtBuffer_e[band] += diff; /* New gain is bigger, use its exponent */
|
|
|
|
|
}
|
|
|
|
|
else if (diff<0) {
|
|
|
|
|
/* The buffered gains seem to be larger, but maybe there
|
|
|
|
|
are some unused bits left in the mantissa */
|
|
|
|
|
|
|
|
|
|
int reserve = CntLeadingZeros(fixp_abs(filtBuffer[band]))-1;
|
|
|
|
|
|
|
|
|
|
if ((-diff) <= reserve) {
|
|
|
|
|
/* There is enough space in the buffered mantissa so
|
|
|
|
|
that we can take the new exponent as common.
|
|
|
|
|
*/
|
|
|
|
|
filtBuffer[band] <<= (-diff);
|
|
|
|
|
filtBuffer_e[band] += diff; /* becomes equal to *ptrNewExp */
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
filtBuffer[band] <<= reserve; /* Shift the mantissa as far as possible: */
|
|
|
|
|
filtBuffer_e[band] -= reserve; /* Compensate in the exponent: */
|
|
|
|
|
|
|
|
|
|
/* For the remaining difference, change the new gain value */
|
|
|
|
|
diff = fixMin(-(reserve + diff),DFRACT_BITS-1);
|
|
|
|
|
nrgGain[band] >>= diff;
|
|
|
|
|
nrgGain_e[band] += diff;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Shift left the mantissas of all subband samples
|
|
|
|
|
in the giventime and frequency range by the specified number of bits.
|
|
|
|
|
|
|
|
|
|
This function is used to rescale the audio data in the overlap buffer
|
|
|
|
|
which has already been envelope adjusted with the last frame.
|
|
|
|
|
*/
|
|
|
|
|
void rescaleSubbandSamples(FIXP_DBL ** re, /*!< Real part of input and output subband samples */
|
|
|
|
|
FIXP_DBL ** im, /*!< Imaginary part of input and output subband samples */
|
|
|
|
|
int lowSubband, /*!< Begin of frequency range to process */
|
|
|
|
|
int highSubband, /*!< End of frequency range to process */
|
|
|
|
|
int start_pos, /*!< Begin of time rage (QMF-timeslot) */
|
|
|
|
|
int next_pos, /*!< End of time rage (QMF-timeslot) */
|
|
|
|
|
int shift) /*!< number of bits to shift */
|
|
|
|
|
{
|
|
|
|
|
int width = highSubband-lowSubband;
|
|
|
|
|
|
|
|
|
|
if ( (width > 0) && (shift!=0) ) {
|
|
|
|
|
if (im!=NULL) {
|
|
|
|
|
for (int l=start_pos; l<next_pos; l++) {
|
|
|
|
|
scaleValues(&re[l][lowSubband], width, shift);
|
|
|
|
|
scaleValues(&im[l][lowSubband], width, shift);
|
|
|
|
|
}
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
for (int l=start_pos; l<next_pos; l++) {
|
|
|
|
|
scaleValues(&re[l][lowSubband], width, shift);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Determine headroom for shifting
|
|
|
|
|
|
|
|
|
|
Determine by how much the spectrum can be shifted left
|
|
|
|
|
for better accuracy in later processing.
|
|
|
|
|
|
|
|
|
|
\return Number of free bits in the biggest spectral value
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
FIXP_DBL maxSubbandSample( FIXP_DBL ** re, /*!< Real part of input and output subband samples */
|
|
|
|
|
FIXP_DBL ** im, /*!< Real part of input and output subband samples */
|
|
|
|
|
int lowSubband, /*!< Begin of frequency range to process */
|
|
|
|
|
int highSubband, /*!< Number of QMF bands to process */
|
|
|
|
|
int start_pos, /*!< Begin of time rage (QMF-timeslot) */
|
|
|
|
|
int next_pos /*!< End of time rage (QMF-timeslot) */
|
|
|
|
|
)
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL maxVal = FL2FX_DBL(0.0f);
|
|
|
|
|
unsigned int width = highSubband - lowSubband;
|
|
|
|
|
|
|
|
|
|
FDK_ASSERT(width <= (64));
|
|
|
|
|
|
|
|
|
|
if ( width > 0 ) {
|
|
|
|
|
if (im!=NULL)
|
|
|
|
|
{
|
|
|
|
|
for (int l=start_pos; l<next_pos; l++)
|
|
|
|
|
{
|
|
|
|
|
#ifdef FUNCTION_FDK_get_maxval
|
|
|
|
|
maxVal = FDK_get_maxval(maxVal, &re[l][lowSubband], &im[l][lowSubband], width);
|
|
|
|
|
#else
|
|
|
|
|
int k=width;
|
|
|
|
|
FIXP_DBL *reTmp = &re[l][lowSubband];
|
|
|
|
|
FIXP_DBL *imTmp = &im[l][lowSubband];
|
|
|
|
|
do{
|
|
|
|
|
FIXP_DBL tmp1 = *(reTmp++);
|
|
|
|
|
FIXP_DBL tmp2 = *(imTmp++);
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(tmp1)^((LONG)tmp1>>(DFRACT_BITS-1)));
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(tmp2)^((LONG)tmp2>>(DFRACT_BITS-1)));
|
|
|
|
|
} while(--k!=0);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
for (int l=start_pos; l<next_pos; l++) {
|
|
|
|
|
int k=width;
|
|
|
|
|
FIXP_DBL *reTmp = &re[l][lowSubband];
|
|
|
|
|
do{
|
|
|
|
|
FIXP_DBL tmp = *(reTmp++);
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(tmp)^((LONG)tmp>>(DFRACT_BITS-1)));
|
|
|
|
|
}while(--k!=0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return(maxVal);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define SHIFT_BEFORE_SQUARE (3) /* (7/2) */
|
|
|
|
|
/*!<
|
|
|
|
|
If the accumulator does not provide enough overflow bits or
|
|
|
|
|
does not provide a high dynamic range, the below energy calculation
|
|
|
|
|
requires an additional shift operation for each sample.
|
|
|
|
|
On the other hand, doing the shift allows using a single-precision
|
|
|
|
|
multiplication for the square (at least 16bit x 16bit).
|
|
|
|
|
For even values of OVRFLW_BITS (0, 2, 4, 6), saturated arithmetic
|
|
|
|
|
is required for the energy accumulation.
|
|
|
|
|
Theoretically, the sample-squares can sum up to a value of 76,
|
|
|
|
|
requiring 7 overflow bits. However since such situations are *very*
|
|
|
|
|
rare, accu can be limited to 64.
|
|
|
|
|
In case native saturated arithmetic is not available, overflows
|
|
|
|
|
can be prevented by replacing the above #define by
|
|
|
|
|
#define SHIFT_BEFORE_SQUARE ((8 - OVRFLW_BITS) / 2)
|
|
|
|
|
which will result in slightly reduced accuracy.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Estimates the mean energy of each filter-bank channel for the
|
|
|
|
|
duration of the current envelope
|
|
|
|
|
|
|
|
|
|
This function is used when interpolFreq is true.
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcNrgPerSubband(FIXP_DBL **analysBufferReal, /*!< Real part of subband samples */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL **analysBufferImag, /*!< Imaginary part of subband samples */
|
|
|
|
|
int lowSubband, /*!< Begin of the SBR frequency range */
|
|
|
|
|
int highSubband, /*!< High end of the SBR frequency range */
|
|
|
|
|
int start_pos, /*!< First QMF-slot of current envelope */
|
|
|
|
|
int next_pos, /*!< Last QMF-slot of current envelope + 1 */
|
|
|
|
|
SCHAR frameExp, /*!< Common exponent for all input samples */
|
|
|
|
|
FIXP_DBL *nrgEst, /*!< resulting Energy (0..1) */
|
|
|
|
|
SCHAR *nrgEst_e ) /*!< Exponent of resulting Energy */
|
|
|
|
|
{
|
|
|
|
|
FIXP_SGL invWidth;
|
|
|
|
|
SCHAR preShift;
|
|
|
|
|
SCHAR shift;
|
|
|
|
|
FIXP_DBL sum;
|
|
|
|
|
int k,l;
|
|
|
|
|
|
|
|
|
|
/* Divide by width of envelope later: */
|
|
|
|
|
invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
|
|
|
|
|
/* The common exponent needs to be doubled because all mantissas are squared: */
|
|
|
|
|
frameExp = frameExp << 1;
|
|
|
|
|
|
|
|
|
|
for (k=lowSubband; k<highSubband; k++) {
|
|
|
|
|
FIXP_DBL bufferReal[(((1024)/(32))+(6))];
|
|
|
|
|
FIXP_DBL bufferImag[(((1024)/(32))+(6))];
|
|
|
|
|
FIXP_DBL maxVal = FL2FX_DBL(0.0f);
|
|
|
|
|
|
|
|
|
|
if (analysBufferImag!=NULL)
|
|
|
|
|
{
|
|
|
|
|
for (l=start_pos;l<next_pos;l++)
|
|
|
|
|
{
|
|
|
|
|
bufferImag[l] = analysBufferImag[l][k];
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(bufferImag[l])^((LONG)bufferImag[l]>>(DFRACT_BITS-1)));
|
|
|
|
|
bufferReal[l] = analysBufferReal[l][k];
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(bufferReal[l])^((LONG)bufferReal[l]>>(DFRACT_BITS-1)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
for (l=start_pos;l<next_pos;l++)
|
|
|
|
|
{
|
|
|
|
|
bufferReal[l] = analysBufferReal[l][k];
|
|
|
|
|
maxVal |= (FIXP_DBL)((LONG)(bufferReal[l])^((LONG)bufferReal[l]>>(DFRACT_BITS-1)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (maxVal!=FL2FXCONST_DBL(0.f)) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* If the accu does not provide enough overflow bits, we cannot
|
|
|
|
|
shift the samples up to the limit.
|
|
|
|
|
Instead, keep up to 3 free bits in each sample, i.e. up to
|
|
|
|
|
6 bits after calculation of square.
|
|
|
|
|
Please note the comment on saturated arithmetic above!
|
|
|
|
|
*/
|
|
|
|
|
FIXP_DBL accu = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
preShift = CntLeadingZeros(maxVal)-1;
|
|
|
|
|
preShift -= SHIFT_BEFORE_SQUARE;
|
|
|
|
|
|
|
|
|
|
if (preShift>=0) {
|
|
|
|
|
if (analysBufferImag!=NULL) {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
FIXP_DBL temp1 = bufferReal[l] << (int)preShift;
|
|
|
|
|
FIXP_DBL temp2 = bufferImag[l] << (int)preShift;
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp1);
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp2);
|
|
|
|
|
}
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
FIXP_DBL temp = bufferReal[l] << (int)preShift;
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { /* if negative shift value */
|
|
|
|
|
int negpreShift = -preShift;
|
|
|
|
|
if (analysBufferImag!=NULL) {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
FIXP_DBL temp1 = bufferReal[l] >> (int)negpreShift;
|
|
|
|
|
FIXP_DBL temp2 = bufferImag[l] >> (int)negpreShift;
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp1);
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp2);
|
|
|
|
|
}
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
FIXP_DBL temp = bufferReal[l] >> (int)negpreShift;
|
|
|
|
|
accu = fPow2AddDiv2(accu, temp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
accu <<= 1;
|
|
|
|
|
|
|
|
|
|
/* Convert double precision to Mantissa/Exponent: */
|
|
|
|
|
shift = fNorm(accu);
|
|
|
|
|
sum = accu << (int)shift;
|
|
|
|
|
|
|
|
|
|
/* Divide by width of envelope and apply frame scale: */
|
|
|
|
|
*nrgEst++ = fMult(sum, invWidth);
|
|
|
|
|
shift += 2 * preShift;
|
|
|
|
|
if (analysBufferImag!=NULL)
|
|
|
|
|
*nrgEst_e++ = frameExp - shift;
|
|
|
|
|
else
|
|
|
|
|
*nrgEst_e++ = frameExp - shift + 1; /* +1 due to missing imag. part */
|
|
|
|
|
} /* maxVal!=0 */
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
/* Prevent a zero-mantissa-number from being misinterpreted
|
|
|
|
|
due to its exponent. */
|
|
|
|
|
*nrgEst++ = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
*nrgEst_e++ = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Estimates the mean energy of each Scale factor band for the
|
|
|
|
|
duration of the current envelope.
|
|
|
|
|
|
|
|
|
|
This function is used when interpolFreq is false.
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcNrgPerSfb(FIXP_DBL **analysBufferReal, /*!< Real part of subband samples */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
FIXP_DBL **analysBufferImag, /*!< Imaginary part of subband samples */
|
|
|
|
|
int nSfb, /*!< Number of scale factor bands */
|
|
|
|
|
UCHAR *freqBandTable, /*!< First Subband for each Sfb */
|
|
|
|
|
int start_pos, /*!< First QMF-slot of current envelope */
|
|
|
|
|
int next_pos, /*!< Last QMF-slot of current envelope + 1 */
|
|
|
|
|
SCHAR input_e, /*!< Common exponent for all input samples */
|
|
|
|
|
FIXP_DBL *nrgEst, /*!< resulting Energy (0..1) */
|
|
|
|
|
SCHAR *nrgEst_e ) /*!< Exponent of resulting Energy */
|
|
|
|
|
{
|
|
|
|
|
FIXP_SGL invWidth;
|
|
|
|
|
FIXP_DBL temp;
|
|
|
|
|
SCHAR preShift;
|
|
|
|
|
SCHAR shift, sum_e;
|
|
|
|
|
FIXP_DBL sum;
|
|
|
|
|
|
|
|
|
|
int j,k,l,li,ui;
|
|
|
|
|
FIXP_DBL sumAll, sumLine; /* Single precision would be sufficient,
|
|
|
|
|
but overflow bits are required for accumulation */
|
|
|
|
|
|
|
|
|
|
/* Divide by width of envelope later: */
|
|
|
|
|
invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
|
|
|
|
|
/* The common exponent needs to be doubled because all mantissas are squared: */
|
|
|
|
|
input_e = input_e << 1;
|
|
|
|
|
|
|
|
|
|
for(j=0; j<nSfb; j++) {
|
|
|
|
|
li = freqBandTable[j];
|
|
|
|
|
ui = freqBandTable[j+1];
|
|
|
|
|
|
|
|
|
|
FIXP_DBL maxVal = maxSubbandSample( analysBufferReal,
|
|
|
|
|
analysBufferImag,
|
|
|
|
|
li,
|
|
|
|
|
ui,
|
|
|
|
|
start_pos,
|
|
|
|
|
next_pos );
|
|
|
|
|
|
|
|
|
|
if (maxVal!=FL2FXCONST_DBL(0.f)) {
|
|
|
|
|
|
|
|
|
|
preShift = CntLeadingZeros(maxVal)-1;
|
|
|
|
|
|
|
|
|
|
/* If the accu does not provide enough overflow bits, we cannot
|
|
|
|
|
shift the samples up to the limit.
|
|
|
|
|
Instead, keep up to 3 free bits in each sample, i.e. up to
|
|
|
|
|
6 bits after calculation of square.
|
|
|
|
|
Please note the comment on saturated arithmetic above!
|
|
|
|
|
*/
|
|
|
|
|
preShift -= SHIFT_BEFORE_SQUARE;
|
|
|
|
|
|
|
|
|
|
sumAll = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (k=li; k<ui; k++) {
|
|
|
|
|
|
|
|
|
|
sumLine = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
|
|
|
|
|
if (analysBufferImag!=NULL) {
|
|
|
|
|
if (preShift>=0) {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
temp = analysBufferReal[l][k] << (int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
temp = analysBufferImag[l][k] << (int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
temp = analysBufferReal[l][k] >> -(int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
temp = analysBufferImag[l][k] >> -(int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else
|
|
|
|
|
{
|
|
|
|
|
if (preShift>=0) {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
temp = analysBufferReal[l][k] << (int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
for (l=start_pos; l<next_pos; l++) {
|
|
|
|
|
temp = analysBufferReal[l][k] >> -(int)preShift;
|
|
|
|
|
sumLine += fPow2Div2(temp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The number of QMF-channels per SBR bands may be up to 15.
|
|
|
|
|
Shift right to avoid overflows in sum over all channels. */
|
|
|
|
|
sumLine = sumLine >> (4-1);
|
|
|
|
|
sumAll += sumLine;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Convert double precision to Mantissa/Exponent: */
|
|
|
|
|
shift = fNorm(sumAll);
|
|
|
|
|
sum = sumAll << (int)shift;
|
|
|
|
|
|
|
|
|
|
/* Divide by width of envelope: */
|
|
|
|
|
sum = fMult(sum,invWidth);
|
|
|
|
|
|
|
|
|
|
/* Divide by width of Sfb: */
|
|
|
|
|
sum = fMult(sum, FX_DBL2FX_SGL(GetInvInt(ui-li)));
|
|
|
|
|
|
|
|
|
|
/* Set all Subband energies in the Sfb to the average energy: */
|
|
|
|
|
if (analysBufferImag!=NULL)
|
|
|
|
|
sum_e = input_e + 4 - shift; /* -4 to compensate right-shift */
|
|
|
|
|
else
|
|
|
|
|
sum_e = input_e + 4 + 1 - shift; /* -4 to compensate right-shift; +1 due to missing imag. part */
|
|
|
|
|
|
|
|
|
|
sum_e -= 2 * preShift;
|
|
|
|
|
} /* maxVal!=0 */
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
/* Prevent a zero-mantissa-number from being misinterpreted
|
|
|
|
|
due to its exponent. */
|
|
|
|
|
sum = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
sum_e = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (k=li; k<ui; k++)
|
|
|
|
|
{
|
|
|
|
|
*nrgEst++ = sum;
|
|
|
|
|
*nrgEst_e++ = sum_e;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Calculate gain, noise, and additional sine level for one subband.
|
|
|
|
|
|
|
|
|
|
The resulting energy gain is given by mantissa and exponent.
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcSubbandGain(FIXP_DBL nrgRef, /*!< Reference Energy according to envelope data */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
SCHAR nrgRef_e, /*!< Reference Energy according to envelope data (exponent) */
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
int i,
|
|
|
|
|
FIXP_DBL tmpNoise, /*!< Relative noise level */
|
|
|
|
|
SCHAR tmpNoise_e, /*!< Relative noise level (exponent) */
|
|
|
|
|
UCHAR sinePresentFlag, /*!< Indicates if sine is present on band */
|
|
|
|
|
UCHAR sineMapped, /*!< Indicates if sine must be added */
|
|
|
|
|
int noNoiseFlag) /*!< Flag to suppress noise addition */
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL nrgEst = nrgs->nrgEst[i]; /*!< Energy in transposed signal */
|
|
|
|
|
SCHAR nrgEst_e = nrgs->nrgEst_e[i]; /*!< Energy in transposed signal (exponent) */
|
|
|
|
|
FIXP_DBL *ptrNrgGain = &nrgs->nrgGain[i]; /*!< Resulting energy gain */
|
|
|
|
|
SCHAR *ptrNrgGain_e = &nrgs->nrgGain_e[i]; /*!< Resulting energy gain (exponent) */
|
|
|
|
|
FIXP_DBL *ptrNoiseLevel = &nrgs->noiseLevel[i]; /*!< Resulting absolute noise energy */
|
|
|
|
|
SCHAR *ptrNoiseLevel_e = &nrgs->noiseLevel_e[i]; /*!< Resulting absolute noise energy (exponent) */
|
|
|
|
|
FIXP_DBL *ptrNrgSine = &nrgs->nrgSine[i]; /*!< Additional sine energy */
|
|
|
|
|
SCHAR *ptrNrgSine_e = &nrgs->nrgSine_e[i]; /*!< Additional sine energy (exponent) */
|
|
|
|
|
|
|
|
|
|
FIXP_DBL a, b, c;
|
|
|
|
|
SCHAR a_e, b_e, c_e;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
This addition of 1 prevents divisions by zero in the reference code.
|
|
|
|
|
For very small energies in nrgEst, it prevents the gains from becoming
|
|
|
|
|
very high which could cause some trouble due to the smoothing.
|
|
|
|
|
*/
|
|
|
|
|
b_e = (int)(nrgEst_e - 1);
|
|
|
|
|
if (b_e>=0) {
|
|
|
|
|
nrgEst = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e+1,DFRACT_BITS-1)) + (nrgEst >> 1);
|
|
|
|
|
nrgEst_e += 1; /* shift by 1 bit to avoid overflow */
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
nrgEst = (nrgEst >> (INT)(fixMin(-b_e+1,DFRACT_BITS-1))) + (FL2FXCONST_DBL(0.5f) >> 1);
|
|
|
|
|
nrgEst_e = 2; /* shift by 1 bit to avoid overflow */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A = NrgRef * TmpNoise */
|
|
|
|
|
a = fMult(nrgRef,tmpNoise);
|
|
|
|
|
a_e = nrgRef_e + tmpNoise_e;
|
|
|
|
|
|
|
|
|
|
/* B = 1 + TmpNoise */
|
|
|
|
|
b_e = (int)(tmpNoise_e - 1);
|
|
|
|
|
if (b_e>=0) {
|
|
|
|
|
b = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e+1,DFRACT_BITS-1)) + (tmpNoise >> 1);
|
|
|
|
|
b_e = tmpNoise_e + 1; /* shift by 1 bit to avoid overflow */
|
|
|
|
|
} else {
|
|
|
|
|
b = (tmpNoise >> (INT)(fixMin(-b_e+1,DFRACT_BITS-1))) + (FL2FXCONST_DBL(0.5f) >> 1);
|
|
|
|
|
b_e = 2; /* shift by 1 bit to avoid overflow */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* noiseLevel = A / B = (NrgRef * TmpNoise) / (1 + TmpNoise) */
|
|
|
|
|
FDK_divide_MantExp( a, a_e,
|
|
|
|
|
b, b_e,
|
|
|
|
|
ptrNoiseLevel, ptrNoiseLevel_e);
|
|
|
|
|
|
|
|
|
|
if (sinePresentFlag) {
|
|
|
|
|
|
|
|
|
|
/* C = (1 + TmpNoise) * NrgEst */
|
|
|
|
|
c = fMult(b,nrgEst);
|
|
|
|
|
c_e = b_e + nrgEst_e;
|
|
|
|
|
|
|
|
|
|
/* gain = A / C = (NrgRef * TmpNoise) / (1 + TmpNoise) * NrgEst */
|
|
|
|
|
FDK_divide_MantExp( a, a_e,
|
|
|
|
|
c, c_e,
|
|
|
|
|
ptrNrgGain, ptrNrgGain_e);
|
|
|
|
|
|
|
|
|
|
if (sineMapped) {
|
|
|
|
|
|
|
|
|
|
/* sineLevel = nrgRef/ (1 + TmpNoise) */
|
|
|
|
|
FDK_divide_MantExp( nrgRef, nrgRef_e,
|
|
|
|
|
b, b_e,
|
|
|
|
|
ptrNrgSine, ptrNrgSine_e);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
if (noNoiseFlag) {
|
|
|
|
|
/* B = NrgEst */
|
|
|
|
|
b = nrgEst;
|
|
|
|
|
b_e = nrgEst_e;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* B = NrgEst * (1 + TmpNoise) */
|
|
|
|
|
b = fMult(b,nrgEst);
|
|
|
|
|
b_e = b_e + nrgEst_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* gain = nrgRef / B */
|
|
|
|
|
FDK_divide_MantExp( nrgRef, nrgRef_e,
|
|
|
|
|
b, b_e,
|
|
|
|
|
ptrNrgGain, ptrNrgGain_e);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Calculate "average gain" for the specified subband range.
|
|
|
|
|
|
|
|
|
|
This is rather a gain of the average magnitude than the average
|
|
|
|
|
of gains!
|
|
|
|
|
The result is used as a relative limit for all gains within the
|
|
|
|
|
current "limiter band" (a certain frequency range).
|
|
|
|
|
*/
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void calcAvgGain(ENV_CALC_NRGS* nrgs,
|
2012-07-11 10:15:24 -07:00
|
|
|
|
int lowSubband, /*!< Begin of the limiter band */
|
|
|
|
|
int highSubband, /*!< High end of the limiter band */
|
|
|
|
|
FIXP_DBL *ptrSumRef,
|
|
|
|
|
SCHAR *ptrSumRef_e,
|
|
|
|
|
FIXP_DBL *ptrAvgGain, /*!< Resulting overall gain (mantissa) */
|
|
|
|
|
SCHAR *ptrAvgGain_e) /*!< Resulting overall gain (exponent) */
|
|
|
|
|
{
|
|
|
|
|
FIXP_DBL *nrgRef = nrgs->nrgRef; /*!< Reference Energy according to envelope data */
|
|
|
|
|
SCHAR *nrgRef_e = nrgs->nrgRef_e; /*!< Reference Energy according to envelope data (exponent) */
|
|
|
|
|
FIXP_DBL *nrgEst = nrgs->nrgEst; /*!< Energy in transposed signal */
|
|
|
|
|
SCHAR *nrgEst_e = nrgs->nrgEst_e; /*!< Energy in transposed signal (exponent) */
|
|
|
|
|
|
|
|
|
|
FIXP_DBL sumRef = 1;
|
|
|
|
|
FIXP_DBL sumEst = 1;
|
|
|
|
|
SCHAR sumRef_e = -FRACT_BITS;
|
|
|
|
|
SCHAR sumEst_e = -FRACT_BITS;
|
|
|
|
|
int k;
|
|
|
|
|
|
|
|
|
|
for (k=lowSubband; k<highSubband; k++){
|
|
|
|
|
/* Add nrgRef[k] to sumRef: */
|
|
|
|
|
FDK_add_MantExp( sumRef, sumRef_e,
|
|
|
|
|
nrgRef[k], nrgRef_e[k],
|
|
|
|
|
&sumRef, &sumRef_e );
|
|
|
|
|
|
|
|
|
|
/* Add nrgEst[k] to sumEst: */
|
|
|
|
|
FDK_add_MantExp( sumEst, sumEst_e,
|
|
|
|
|
nrgEst[k], nrgEst_e[k],
|
|
|
|
|
&sumEst, &sumEst_e );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FDK_divide_MantExp(sumRef, sumRef_e,
|
|
|
|
|
sumEst, sumEst_e,
|
|
|
|
|
ptrAvgGain, ptrAvgGain_e);
|
|
|
|
|
|
|
|
|
|
*ptrSumRef = sumRef;
|
|
|
|
|
*ptrSumRef_e = sumRef_e;
|
|
|
|
|
}
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void adjustTimeSlot_EldGrid(
|
|
|
|
|
FIXP_DBL *ptrReal, /*!< Subband samples to be adjusted, real part */
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
UCHAR *ptrHarmIndex, /*!< Harmonic index */
|
|
|
|
|
int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
|
|
|
|
|
int noSubbands, /*!< Number of QMF subbands */
|
|
|
|
|
int scale_change, /*!< Number of bits to shift adjusted samples */
|
|
|
|
|
int noNoiseFlag, /*!< Flag to suppress noise addition */
|
|
|
|
|
int *ptrPhaseIndex, /*!< Start index to random number array */
|
|
|
|
|
int scale_diff_low) /*!< */
|
|
|
|
|
{
|
|
|
|
|
int k;
|
|
|
|
|
FIXP_DBL signalReal, sbNoise;
|
|
|
|
|
int tone_count = 0;
|
|
|
|
|
|
|
|
|
|
FIXP_DBL *pGain = nrgs->nrgGain; /*!< Gains of current envelope */
|
|
|
|
|
FIXP_DBL *pNoiseLevel = nrgs->noiseLevel; /*!< Noise levels of current envelope */
|
|
|
|
|
FIXP_DBL *pSineLevel = nrgs->nrgSine; /*!< Sine levels */
|
|
|
|
|
|
|
|
|
|
int phaseIndex = *ptrPhaseIndex;
|
|
|
|
|
UCHAR harmIndex = *ptrHarmIndex;
|
|
|
|
|
|
|
|
|
|
static const INT harmonicPhase [2][4] = {
|
|
|
|
|
{ 1, 0, -1, 0},
|
|
|
|
|
{ 0, 1, 0, -1}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static const FIXP_DBL harmonicPhaseX [2][4] = {
|
|
|
|
|
{ FL2FXCONST_DBL(2.0*1.245183154539139e-001), FL2FXCONST_DBL(2.0*-1.123767859325028e-001), FL2FXCONST_DBL(2.0*-1.245183154539139e-001), FL2FXCONST_DBL(2.0* 1.123767859325028e-001) },
|
|
|
|
|
{ FL2FXCONST_DBL(2.0*1.245183154539139e-001), FL2FXCONST_DBL(2.0* 1.123767859325028e-001), FL2FXCONST_DBL(2.0*-1.245183154539139e-001), FL2FXCONST_DBL(2.0*-1.123767859325028e-001) }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
for (k=0; k < noSubbands; k++) {
|
|
|
|
|
|
|
|
|
|
phaseIndex = (phaseIndex + 1) & (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
|
|
|
|
|
if( (pSineLevel[0] != FL2FXCONST_DBL(0.0f)) || (noNoiseFlag == 1) ){
|
|
|
|
|
sbNoise = FL2FXCONST_DBL(0.0f);
|
|
|
|
|
} else {
|
|
|
|
|
sbNoise = pNoiseLevel[0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal,*pGain) << ((int)scale_change);
|
|
|
|
|
|
|
|
|
|
signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[phaseIndex][0], sbNoise)<<4);
|
|
|
|
|
|
|
|
|
|
signalReal += pSineLevel[0] * harmonicPhase[0][harmIndex];
|
|
|
|
|
|
|
|
|
|
*ptrReal = signalReal;
|
|
|
|
|
|
|
|
|
|
if (k == 0) {
|
|
|
|
|
*(ptrReal-1) += scaleValue(fMultDiv2(harmonicPhaseX[lowSubband&1][harmIndex], pSineLevel[0]), -scale_diff_low) ;
|
|
|
|
|
if (k < noSubbands - 1) {
|
|
|
|
|
*(ptrReal) += fMultDiv2(pSineLevel[1], harmonicPhaseX[(lowSubband+1)&1][harmIndex]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (k > 0 && k < noSubbands - 1 && tone_count < 16) {
|
|
|
|
|
*(ptrReal) += fMultDiv2(pSineLevel[- 1], harmonicPhaseX [(lowSubband+k)&1] [harmIndex]);
|
|
|
|
|
*(ptrReal) += fMultDiv2(pSineLevel[+ 1], harmonicPhaseX [(lowSubband+k+1)&1][harmIndex]);
|
|
|
|
|
}
|
|
|
|
|
if (k == noSubbands - 1 && tone_count < 16) {
|
|
|
|
|
if (k > 0) {
|
|
|
|
|
*(ptrReal) += fMultDiv2(pSineLevel[- 1], harmonicPhaseX [(lowSubband+k)&1][harmIndex]);
|
|
|
|
|
}
|
|
|
|
|
if (k + lowSubband + 1< 63) {
|
|
|
|
|
*(ptrReal+1) += fMultDiv2(pSineLevel[0], harmonicPhaseX[(lowSubband+k+1)&1][harmIndex]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(pSineLevel[0] != FL2FXCONST_DBL(0.0f)){
|
|
|
|
|
tone_count++;
|
|
|
|
|
}
|
|
|
|
|
ptrReal++;
|
|
|
|
|
pNoiseLevel++;
|
|
|
|
|
pGain++;
|
|
|
|
|
pSineLevel++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*ptrHarmIndex = (harmIndex + 1) & 3;
|
|
|
|
|
*ptrPhaseIndex = phaseIndex & (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
}
|
2012-07-11 10:15:24 -07:00
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Amplify one timeslot of the signal with the calculated gains
|
|
|
|
|
and add the noisefloor.
|
|
|
|
|
*/
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void adjustTimeSlotLC(FIXP_DBL *ptrReal, /*!< Subband samples to be adjusted, real part */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
UCHAR *ptrHarmIndex, /*!< Harmonic index */
|
|
|
|
|
int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
|
|
|
|
|
int noSubbands, /*!< Number of QMF subbands */
|
|
|
|
|
int scale_change, /*!< Number of bits to shift adjusted samples */
|
|
|
|
|
int noNoiseFlag, /*!< Flag to suppress noise addition */
|
2016-04-08 12:05:12 -07:00
|
|
|
|
int *ptrPhaseIndex) /*!< Start index to random number array */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
{
|
|
|
|
|
FIXP_DBL *pGain = nrgs->nrgGain; /*!< Gains of current envelope */
|
|
|
|
|
FIXP_DBL *pNoiseLevel = nrgs->noiseLevel; /*!< Noise levels of current envelope */
|
|
|
|
|
FIXP_DBL *pSineLevel = nrgs->nrgSine; /*!< Sine levels */
|
|
|
|
|
|
|
|
|
|
int k;
|
|
|
|
|
int index = *ptrPhaseIndex;
|
|
|
|
|
UCHAR harmIndex = *ptrHarmIndex;
|
|
|
|
|
UCHAR freqInvFlag = (lowSubband & 1);
|
|
|
|
|
FIXP_DBL signalReal, sineLevel, sineLevelNext, sineLevelPrev;
|
|
|
|
|
int tone_count = 0;
|
|
|
|
|
int sineSign = 1;
|
|
|
|
|
|
|
|
|
|
#define C1 ((FIXP_SGL)FL2FXCONST_SGL(2.f*0.00815f))
|
|
|
|
|
#define C1_CLDFB ((FIXP_SGL)FL2FXCONST_SGL(2.f*0.16773f))
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
First pass for k=0 pulled out of the loop:
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
index = (index + 1) & (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
The next multiplication constitutes the actual envelope adjustment
|
|
|
|
|
of the signal and should be carried out with full accuracy
|
|
|
|
|
(supplying #FRACT_BITS valid bits).
|
|
|
|
|
*/
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);
|
|
|
|
|
sineLevel = *pSineLevel++;
|
|
|
|
|
sineLevelNext = (noSubbands > 1) ? pSineLevel[0] : FL2FXCONST_DBL(0.0f);
|
|
|
|
|
|
|
|
|
|
if (sineLevel!=FL2FXCONST_DBL(0.0f)) tone_count++;
|
|
|
|
|
else if (!noNoiseFlag)
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
if (!(harmIndex&0x1)) {
|
|
|
|
|
/* harmIndex 0,2 */
|
|
|
|
|
signalReal += (harmIndex&0x2) ? -sineLevel : sineLevel;
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* harmIndex 1,3 in combination with freqInvFlag */
|
|
|
|
|
int shift = (int) (scale_change+1);
|
|
|
|
|
shift = (shift>=0) ? fixMin(DFRACT_BITS-1,shift) : fixMax(-(DFRACT_BITS-1),shift);
|
|
|
|
|
|
|
|
|
|
FIXP_DBL tmp1 = (shift>=0) ? ( fMultDiv2(C1, sineLevel) >> shift )
|
|
|
|
|
: ( fMultDiv2(C1, sineLevel) << (-shift) );
|
|
|
|
|
FIXP_DBL tmp2 = fMultDiv2(C1, sineLevelNext);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* save switch and compare operations and reduce to XOR statement */
|
|
|
|
|
if ( ((harmIndex>>1)&0x1)^freqInvFlag) {
|
|
|
|
|
*(ptrReal-1) += tmp1;
|
|
|
|
|
signalReal -= tmp2;
|
|
|
|
|
} else {
|
|
|
|
|
*(ptrReal-1) -= tmp1;
|
|
|
|
|
signalReal += tmp2;
|
|
|
|
|
}
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
freqInvFlag = !freqInvFlag;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pNoiseLevel++;
|
|
|
|
|
|
|
|
|
|
if ( noSubbands > 2 ) {
|
|
|
|
|
if (!(harmIndex&0x1)) {
|
|
|
|
|
/* harmIndex 0,2 */
|
|
|
|
|
if(!harmIndex)
|
|
|
|
|
{
|
|
|
|
|
sineSign = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (k=noSubbands-2; k!=0; k--) {
|
|
|
|
|
FIXP_DBL sinelevel = *pSineLevel++;
|
|
|
|
|
index++;
|
|
|
|
|
if (((signalReal = (sineSign ? -sinelevel : sinelevel)) == FL2FXCONST_DBL(0.0f)) && !noNoiseFlag)
|
|
|
|
|
{
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
index &= (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The next multiplication constitutes the actual envelope adjustment of the signal. */
|
|
|
|
|
signalReal += fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);
|
|
|
|
|
|
|
|
|
|
pNoiseLevel++;
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
} /* for ... */
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* harmIndex 1,3 in combination with freqInvFlag */
|
|
|
|
|
if (harmIndex==1) freqInvFlag = !freqInvFlag;
|
|
|
|
|
|
|
|
|
|
for (k=noSubbands-2; k!=0; k--) {
|
|
|
|
|
index++;
|
|
|
|
|
/* The next multiplication constitutes the actual envelope adjustment of the signal. */
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);
|
|
|
|
|
|
|
|
|
|
if (*pSineLevel++!=FL2FXCONST_DBL(0.0f)) tone_count++;
|
|
|
|
|
else if (!noNoiseFlag) {
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
index &= (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pNoiseLevel++;
|
|
|
|
|
|
|
|
|
|
if (tone_count <= 16) {
|
|
|
|
|
FIXP_DBL addSine = fMultDiv2((pSineLevel[-2] - pSineLevel[0]), C1);
|
|
|
|
|
signalReal += (freqInvFlag) ? (-addSine) : (addSine);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
freqInvFlag = !freqInvFlag;
|
|
|
|
|
} /* for ... */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (noSubbands > -1) {
|
|
|
|
|
index++;
|
|
|
|
|
/* The next multiplication constitutes the actual envelope adjustment of the signal. */
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal,*pGain) << ((int)scale_change);
|
|
|
|
|
sineLevelPrev = fMultDiv2(pSineLevel[-1],FL2FX_SGL(0.0163f));
|
|
|
|
|
sineLevel = pSineLevel[0];
|
|
|
|
|
|
|
|
|
|
if (pSineLevel[0]!=FL2FXCONST_DBL(0.0f)) tone_count++;
|
|
|
|
|
else if (!noNoiseFlag) {
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
index &= (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
signalReal = signalReal + (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!(harmIndex&0x1)) {
|
|
|
|
|
/* harmIndex 0,2 */
|
|
|
|
|
*ptrReal = signalReal + ( (sineSign) ? -sineLevel : sineLevel);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* harmIndex 1,3 in combination with freqInvFlag */
|
|
|
|
|
if(tone_count <= 16){
|
|
|
|
|
if (freqInvFlag) {
|
|
|
|
|
*ptrReal++ = signalReal - sineLevelPrev;
|
|
|
|
|
if (noSubbands + lowSubband < 63)
|
|
|
|
|
*ptrReal = *ptrReal + fMultDiv2(C1, sineLevel);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
*ptrReal++ = signalReal + sineLevelPrev;
|
|
|
|
|
if (noSubbands + lowSubband < 63)
|
|
|
|
|
*ptrReal = *ptrReal - fMultDiv2(C1, sineLevel);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else *ptrReal = signalReal;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*ptrHarmIndex = (harmIndex + 1) & 3;
|
|
|
|
|
*ptrPhaseIndex = index & (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
}
|
2016-04-08 12:05:12 -07:00
|
|
|
|
static void adjustTimeSlotHQ(
|
|
|
|
|
FIXP_DBL *RESTRICT ptrReal, /*!< Subband samples to be adjusted, real part */
|
|
|
|
|
FIXP_DBL *RESTRICT ptrImag, /*!< Subband samples to be adjusted, imag part */
|
2012-07-11 10:15:24 -07:00
|
|
|
|
HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env,
|
|
|
|
|
ENV_CALC_NRGS* nrgs,
|
|
|
|
|
int lowSubband, /*!< Lowest QMF-channel in the currently used SBR range. */
|
|
|
|
|
int noSubbands, /*!< Number of QMF subbands */
|
|
|
|
|
int scale_change, /*!< Number of bits to shift adjusted samples */
|
|
|
|
|
FIXP_SGL smooth_ratio, /*!< Impact of last envelope */
|
|
|
|
|
int noNoiseFlag, /*!< Start index to random number array */
|
|
|
|
|
int filtBufferNoiseShift) /*!< Shift factor of filtBufferNoise */
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
FIXP_DBL *RESTRICT gain = nrgs->nrgGain; /*!< Gains of current envelope */
|
|
|
|
|
FIXP_DBL *RESTRICT noiseLevel = nrgs->noiseLevel; /*!< Noise levels of current envelope */
|
|
|
|
|
FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine; /*!< Sine levels */
|
|
|
|
|
|
|
|
|
|
FIXP_DBL *RESTRICT filtBuffer = h_sbr_cal_env->filtBuffer; /*!< Gains of last envelope */
|
|
|
|
|
FIXP_DBL *RESTRICT filtBufferNoise = h_sbr_cal_env->filtBufferNoise; /*!< Noise levels of last envelope */
|
|
|
|
|
UCHAR *RESTRICT ptrHarmIndex =&h_sbr_cal_env->harmIndex; /*!< Harmonic index */
|
|
|
|
|
int *RESTRICT ptrPhaseIndex =&h_sbr_cal_env->phaseIndex; /*!< Start index to random number array */
|
|
|
|
|
|
|
|
|
|
int k;
|
|
|
|
|
FIXP_DBL signalReal, signalImag;
|
|
|
|
|
FIXP_DBL noiseReal, noiseImag;
|
|
|
|
|
FIXP_DBL smoothedGain, smoothedNoise;
|
|
|
|
|
FIXP_SGL direct_ratio = /*FL2FXCONST_SGL(1.0f) */ (FIXP_SGL)MAXVAL_SGL - smooth_ratio;
|
|
|
|
|
int index = *ptrPhaseIndex;
|
|
|
|
|
UCHAR harmIndex = *ptrHarmIndex;
|
|
|
|
|
register int freqInvFlag = (lowSubband & 1);
|
|
|
|
|
FIXP_DBL sineLevel;
|
|
|
|
|
int shift;
|
|
|
|
|
|
|
|
|
|
*ptrPhaseIndex = (index+noSubbands) & (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
*ptrHarmIndex = (harmIndex + 1) & 3;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Possible optimization:
|
|
|
|
|
smooth_ratio and harmIndex stay constant during the loop.
|
|
|
|
|
It might be faster to include a separate loop in each path.
|
|
|
|
|
|
|
|
|
|
the check for smooth_ratio is now outside the loop and the workload
|
|
|
|
|
of the whole function decreased by about 20 %
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
filtBufferNoiseShift += 1; /* due to later use of fMultDiv2 instead of fMult */
|
|
|
|
|
if (filtBufferNoiseShift<0)
|
|
|
|
|
shift = fixMin(DFRACT_BITS-1,-filtBufferNoiseShift);
|
|
|
|
|
else
|
|
|
|
|
shift = fixMin(DFRACT_BITS-1, filtBufferNoiseShift);
|
|
|
|
|
|
|
|
|
|
if (smooth_ratio > FL2FXCONST_SGL(0.0f)) {
|
|
|
|
|
|
|
|
|
|
for (k=0; k<noSubbands; k++) {
|
|
|
|
|
/*
|
|
|
|
|
Smoothing: The old envelope has been bufferd and a certain ratio
|
|
|
|
|
of the old gains and noise levels is used.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
smoothedGain = fMult(smooth_ratio,filtBuffer[k]) +
|
|
|
|
|
fMult(direct_ratio,gain[k]);
|
|
|
|
|
|
|
|
|
|
if (filtBufferNoiseShift<0) {
|
|
|
|
|
smoothedNoise = (fMultDiv2(smooth_ratio,filtBufferNoise[k])>>shift) +
|
|
|
|
|
fMult(direct_ratio,noiseLevel[k]);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
smoothedNoise = (fMultDiv2(smooth_ratio,filtBufferNoise[k])<<shift) +
|
|
|
|
|
fMult(direct_ratio,noiseLevel[k]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
The next 2 multiplications constitute the actual envelope adjustment
|
|
|
|
|
of the signal and should be carried out with full accuracy
|
|
|
|
|
(supplying #DFRACT_BITS valid bits).
|
|
|
|
|
*/
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal,smoothedGain)<<((int)scale_change);
|
|
|
|
|
signalImag = fMultDiv2(*ptrImag,smoothedGain)<<((int)scale_change);
|
|
|
|
|
|
|
|
|
|
index++;
|
|
|
|
|
|
|
|
|
|
if (pSineLevel[k] != FL2FXCONST_DBL(0.0f)) {
|
|
|
|
|
sineLevel = pSineLevel[k];
|
|
|
|
|
|
|
|
|
|
switch(harmIndex) {
|
|
|
|
|
case 0:
|
|
|
|
|
*ptrReal++ = (signalReal + sineLevel);
|
|
|
|
|
*ptrImag++ = (signalImag);
|
|
|
|
|
break;
|
|
|
|
|
case 2:
|
|
|
|
|
*ptrReal++ = (signalReal - sineLevel);
|
|
|
|
|
*ptrImag++ = (signalImag);
|
|
|
|
|
break;
|
|
|
|
|
case 1:
|
|
|
|
|
*ptrReal++ = (signalReal);
|
|
|
|
|
if (freqInvFlag)
|
|
|
|
|
*ptrImag++ = (signalImag - sineLevel);
|
|
|
|
|
else
|
|
|
|
|
*ptrImag++ = (signalImag + sineLevel);
|
|
|
|
|
break;
|
|
|
|
|
case 3:
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
if (freqInvFlag)
|
|
|
|
|
*ptrImag++ = (signalImag + sineLevel);
|
|
|
|
|
else
|
|
|
|
|
*ptrImag++ = (signalImag - sineLevel);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
if (noNoiseFlag) {
|
|
|
|
|
/* Just the amplified signal is saved */
|
|
|
|
|
*ptrReal++ = (signalReal);
|
|
|
|
|
*ptrImag++ = (signalImag);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
index &= (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
noiseReal = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise)<<4;
|
|
|
|
|
noiseImag = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise)<<4;
|
|
|
|
|
*ptrReal++ = (signalReal + noiseReal);
|
|
|
|
|
*ptrImag++ = (signalImag + noiseImag);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
freqInvFlag ^= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
for (k=0; k<noSubbands; k++)
|
|
|
|
|
{
|
|
|
|
|
smoothedGain = gain[k];
|
|
|
|
|
signalReal = fMultDiv2(*ptrReal, smoothedGain) << scale_change;
|
|
|
|
|
signalImag = fMultDiv2(*ptrImag, smoothedGain) << scale_change;
|
|
|
|
|
|
|
|
|
|
index++;
|
|
|
|
|
|
|
|
|
|
if ((sineLevel = pSineLevel[k]) != FL2FXCONST_DBL(0.0f))
|
|
|
|
|
{
|
|
|
|
|
switch (harmIndex)
|
|
|
|
|
{
|
|
|
|
|
case 0:
|
|
|
|
|
signalReal += sineLevel;
|
|
|
|
|
break;
|
|
|
|
|
case 1:
|
|
|
|
|
if (freqInvFlag)
|
|
|
|
|
signalImag -= sineLevel;
|
|
|
|
|
else
|
|
|
|
|
signalImag += sineLevel;
|
|
|
|
|
break;
|
|
|
|
|
case 2:
|
|
|
|
|
signalReal -= sineLevel;
|
|
|
|
|
break;
|
|
|
|
|
case 3:
|
|
|
|
|
if (freqInvFlag)
|
|
|
|
|
signalImag += sineLevel;
|
|
|
|
|
else
|
|
|
|
|
signalImag -= sineLevel;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (noNoiseFlag == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Add noisefloor to the amplified signal */
|
|
|
|
|
smoothedNoise = noiseLevel[k];
|
|
|
|
|
index &= (SBR_NF_NO_RANDOM_VAL - 1);
|
|
|
|
|
noiseReal = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise);
|
|
|
|
|
noiseImag = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise);
|
|
|
|
|
signalReal += noiseReal<<4;
|
|
|
|
|
signalImag += noiseImag<<4;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*ptrReal++ = signalReal;
|
|
|
|
|
*ptrImag++ = signalImag;
|
|
|
|
|
|
|
|
|
|
freqInvFlag ^= 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
\brief Reset limiter bands.
|
|
|
|
|
|
|
|
|
|
Build frequency band table for the gain limiter dependent on
|
|
|
|
|
the previously generated transposer patch areas.
|
|
|
|
|
|
|
|
|
|
\return SBRDEC_OK if ok, SBRDEC_UNSUPPORTED_CONFIG on error
|
|
|
|
|
*/
|
|
|
|
|
SBR_ERROR
|
|
|
|
|
ResetLimiterBands ( UCHAR *limiterBandTable, /*!< Resulting band borders in QMF channels */
|
|
|
|
|
UCHAR *noLimiterBands, /*!< Resulting number of limiter band */
|
|
|
|
|
UCHAR *freqBandTable, /*!< Table with possible band borders */
|
|
|
|
|
int noFreqBands, /*!< Number of bands in freqBandTable */
|
|
|
|
|
const PATCH_PARAM *patchParam, /*!< Transposer patch parameters */
|
|
|
|
|
int noPatches, /*!< Number of transposer patches */
|
|
|
|
|
int limiterBands) /*!< Selected 'band density' from bitstream */
|
|
|
|
|
{
|
|
|
|
|
int i, k, isPatchBorder[2], loLimIndex, hiLimIndex, tempNoLim, nBands;
|
|
|
|
|
UCHAR workLimiterBandTable[MAX_FREQ_COEFFS / 2 + MAX_NUM_PATCHES + 1];
|
|
|
|
|
int patchBorders[MAX_NUM_PATCHES + 1];
|
|
|
|
|
int kx, k2;
|
|
|
|
|
|
|
|
|
|
int lowSubband = freqBandTable[0];
|
|
|
|
|
int highSubband = freqBandTable[noFreqBands];
|
|
|
|
|
|
|
|
|
|
/* 1 limiter band. */
|
|
|
|
|
if(limiterBands == 0) {
|
|
|
|
|
limiterBandTable[0] = 0;
|
|
|
|
|
limiterBandTable[1] = highSubband - lowSubband;
|
|
|
|
|
nBands = 1;
|
|
|
|
|
} else {
|
|
|
|
|
for (i = 0; i < noPatches; i++) {
|
|
|
|
|
patchBorders[i] = patchParam[i].guardStartBand - lowSubband;
|
|
|
|
|
}
|
|
|
|
|
patchBorders[i] = highSubband - lowSubband;
|
|
|
|
|
|
|
|
|
|
/* 1.2, 2, or 3 limiter bands/octave plus bandborders at patchborders. */
|
|
|
|
|
for (k = 0; k <= noFreqBands; k++) {
|
|
|
|
|
workLimiterBandTable[k] = freqBandTable[k] - lowSubband;
|
|
|
|
|
}
|
|
|
|
|
for (k = 1; k < noPatches; k++) {
|
|
|
|
|
workLimiterBandTable[noFreqBands + k] = patchBorders[k];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
tempNoLim = nBands = noFreqBands + noPatches - 1;
|
|
|
|
|
shellsort(workLimiterBandTable, tempNoLim + 1);
|
|
|
|
|
|
|
|
|
|
loLimIndex = 0;
|
|
|
|
|
hiLimIndex = 1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while (hiLimIndex <= tempNoLim) {
|
2016-04-08 12:05:12 -07:00
|
|
|
|
FIXP_DBL div_m, oct_m, temp;
|
|
|
|
|
INT div_e = 0, oct_e = 0, temp_e = 0;
|
|
|
|
|
|
2012-07-11 10:15:24 -07:00
|
|
|
|
k2 = workLimiterBandTable[hiLimIndex] + lowSubband;
|
|
|
|
|
kx = workLimiterBandTable[loLimIndex] + lowSubband;
|
|
|
|
|
|
2016-04-08 12:05:12 -07:00
|
|
|
|
div_m = fDivNorm(k2, kx, &div_e);
|
|
|
|
|
|
|
|
|
|
/* calculate number of octaves */
|
|
|
|
|
oct_m = fLog2(div_m, div_e, &oct_e);
|
|
|
|
|
|
|
|
|
|
/* multiply with limiterbands per octave */
|
|
|
|
|
/* values 1, 1.2, 2, 3 -> scale factor of 2 */
|
|
|
|
|
temp = fMultNorm(oct_m, FDK_sbrDecoder_sbr_limiterBandsPerOctaveDiv4_DBL[limiterBands], &temp_e);
|
|
|
|
|
|
|
|
|
|
/* overall scale factor of temp ist addition of scalefactors from log2 calculation,
|
|
|
|
|
limiter bands scalefactor (2) and limiter bands multiplication */
|
|
|
|
|
temp_e += oct_e + 2;
|
|
|
|
|
|
|
|
|
|
/* div can be a maximum of 64 (k2 = 64 and kx = 1)
|
|
|
|
|
-> oct can be a maximum of 6
|
|
|
|
|
-> temp can be a maximum of 18 (as limiterBandsPerOctoave is a maximum factor of 3)
|
|
|
|
|
-> we need a scale factor of 5 for comparisson
|
|
|
|
|
*/
|
|
|
|
|
if (temp >> (5 - temp_e) < FL2FXCONST_DBL (0.49f) >> 5) {
|
2012-07-11 10:15:24 -07:00
|
|
|
|
|
|
|
|
|
if (workLimiterBandTable[hiLimIndex] == workLimiterBandTable[loLimIndex]) {
|
|
|
|
|
workLimiterBandTable[hiLimIndex] = highSubband;
|
|
|
|
|
nBands--;
|
|
|
|
|
hiLimIndex++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
isPatchBorder[0] = isPatchBorder[1] = 0;
|
|
|
|
|
for (k = 0; k <= noPatches; k++) {
|
|
|
|
|
if (workLimiterBandTable[hiLimIndex] == patchBorders[k]) {
|
|
|
|
|
isPatchBorder[1] = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (!isPatchBorder[1]) {
|
|
|
|
|
workLimiterBandTable[hiLimIndex] = highSubband;
|
|
|
|
|
nBands--;
|
|
|
|
|
hiLimIndex++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
for (k = 0; k <= noPatches; k++) {
|
|
|
|
|
if (workLimiterBandTable[loLimIndex] == patchBorders[k]) {
|
|
|
|
|
isPatchBorder[0] = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (!isPatchBorder[0]) {
|
|
|
|
|
workLimiterBandTable[loLimIndex] = highSubband;
|
|
|
|
|
nBands--;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
loLimIndex = hiLimIndex;
|
|
|
|
|
hiLimIndex++;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
shellsort(workLimiterBandTable, tempNoLim + 1);
|
|
|
|
|
|
|
|
|
|
/* Test if algorithm exceeded maximum allowed limiterbands */
|
|
|
|
|
if( nBands > MAX_NUM_LIMITERS || nBands <= 0) {
|
|
|
|
|
return SBRDEC_UNSUPPORTED_CONFIG;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy limiterbands from working buffer into final destination */
|
|
|
|
|
for (k = 0; k <= nBands; k++) {
|
|
|
|
|
limiterBandTable[k] = workLimiterBandTable[k];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*noLimiterBands = nBands;
|
|
|
|
|
|
|
|
|
|
return SBRDEC_OK;
|
|
|
|
|
}
|
|
|
|
|
|