Files
exhale/src/lib/specAnalysis.cpp
Christian R. Helmrich a327f120c1 retune TNS for SBR
2021-05-13 01:00:01 +02:00

465 lines
19 KiB
C++

/* specAnalysis.cpp - source file for class providing spectral analysis of MCLT signals
* written by C. R. Helmrich, last modified in 2021 - see License.htm for legal notices
*
* The copyright in this software is being made available under the exhale Copyright License
* and comes with ABSOLUTELY NO WARRANTY. This software may be subject to other third-
* party rights, including patent rights. No such rights are granted under this License.
*
* Copyright (c) 2018-2021 Christian R. Helmrich, project ecodis. All rights reserved.
*/
#include "exhaleLibPch.h"
#include "specAnalysis.h"
// static helper functions
static inline uint64_t complexAbs (const int32_t realPart, const int32_t imagPart)
{
#if SA_EXACT_COMPLEX_ABS
const double complexSqr = (double) realPart * (double) realPart + (double) imagPart * (double) imagPart;
return uint64_t (sqrt (complexSqr) + 0.5);
#else
const uint64_t absReal = abs (realPart); // Richard Lyons, 1997; en.wikipedia.org/
const uint64_t absImag = abs (imagPart); // wiki/Alpha_max_plus_beta_min_algorithm
return (absReal > absImag ? absReal + ((absImag * 3) >> 3) : absImag + ((absReal * 3) >> 3));
#endif
}
static inline uint32_t packAvgSpecAnalysisStats (const uint64_t sumAvgBand, const uint64_t sumMaxBand,
const uint8_t predGain,
const uint16_t idxMaxSpec, const uint16_t idxLpStart)
{
// temporal flatness, normalized for a value of 256 for a linear prediction gain of 1 (0 dB)
const unsigned flatTemp = predGain;
// spectral flatness, normalized for a value of 256 for steady low or mid-frequency sinusoid
const int32_t flatSpec = 256 - int (((sumAvgBand + SA_EPS) * 402) / (sumMaxBand + SA_EPS));
return (flatTemp << 24) | (CLIP_UCHAR (flatSpec) << 16) | (__min (2047, idxMaxSpec) << 5) | __min (31, idxLpStart);
}
// constructor
SpecAnalyzer::SpecAnalyzer ()
{
for (unsigned ch = 0; ch < USAC_MAX_NUM_CHANNELS; ch++)
{
m_bandwidthOff[ch] = 0;
m_magnCorrPrev[ch] = 0;
m_magnSpectra [ch] = nullptr;
m_numAnaBands [ch] = 0;
m_specAnaStats[ch] = 0;
memset (m_parCorCoeffs[ch], 0, MAX_PREDICTION_ORDER * sizeof (short));
}
m_tnsPredictor = nullptr;
}
// public functions
unsigned SpecAnalyzer::getLinPredCoeffs (short parCorCoeffs[MAX_PREDICTION_ORDER], const unsigned channelIndex) // returns best filter order
{
unsigned bestOrder = MAX_PREDICTION_ORDER, predGainCurr, predGainPrev;
if ((parCorCoeffs == nullptr) || (channelIndex >= USAC_MAX_NUM_CHANNELS))
{
return 0; // invalid arguments error
}
memcpy (parCorCoeffs, m_parCorCoeffs[channelIndex], MAX_PREDICTION_ORDER * sizeof (short));
predGainCurr = (m_tnsPredGains[channelIndex] >> 24) & UCHAR_MAX;
predGainPrev = (m_tnsPredGains[channelIndex] >> 16) & UCHAR_MAX;
while ((bestOrder > 1) && (predGainPrev >= predGainCurr)) // find lowest-order gain maximum
{
bestOrder--;
predGainCurr = predGainPrev;
predGainPrev = (m_tnsPredGains[channelIndex] >> (8 * bestOrder - 16)) & UCHAR_MAX;
}
return ((bestOrder == 1) && (m_parCorCoeffs[channelIndex][0] == 0) ? 0 : bestOrder);
}
unsigned SpecAnalyzer::getMeanAbsValues (const int32_t* const mdctSignal, const int32_t* const mdstSignal, const unsigned nSamplesInFrame,
const unsigned channelIndex, const uint16_t* const bandStartOffsets, const unsigned nBands,
uint32_t* const meanBandValues)
{
if ((mdctSignal == nullptr) || (bandStartOffsets == nullptr) || (meanBandValues == nullptr) || (channelIndex > USAC_MAX_NUM_CHANNELS) ||
(nSamplesInFrame > 2048) || (nSamplesInFrame < 2) || (nBands > nSamplesInFrame))
{
return 1; // invalid arguments error
}
if (mdstSignal != nullptr) // use complex-valued spectral data
{
for (unsigned b = 0; b < nBands; b++)
{
const unsigned bandOffset = __min (nSamplesInFrame, bandStartOffsets[b]);
const unsigned bandWidth = __min (nSamplesInFrame, bandStartOffsets[b + 1]) - bandOffset;
const unsigned anaBandIdx = bandOffset >> SA_BW_SHIFT;
if ((channelIndex < USAC_MAX_NUM_CHANNELS) && (anaBandIdx < m_numAnaBands[channelIndex]) &&
(bandOffset == (anaBandIdx << SA_BW_SHIFT)) && ((bandWidth & (SA_BW - 1)) == 0))
{
const uint32_t* const anaAbsVal = &m_meanAbsValue[channelIndex][anaBandIdx];
// data available from previous call to spectralAnalysis
meanBandValues[b] = (bandWidth == SA_BW ? *anaAbsVal : uint32_t (((int64_t) anaAbsVal[0] + (int64_t) anaAbsVal[1] + 1) >> 1));
}
else // no previous data available, compute mean magnitude
{
const int32_t* bMdct = &mdctSignal[bandOffset];
const int32_t* bMdst = &mdstSignal[bandOffset];
uint64_t sumAbsVal = 0;
for (unsigned s = bandWidth; s > 0; s--) sumAbsVal += complexAbs (*(bMdct++), *(bMdst++));
// average spectral sample magnitude across current band
meanBandValues[b] = uint32_t ((sumAbsVal + (bandWidth >> 1)) / bandWidth);
}
} // for b
}
else // no imaginary part available, real-valued spectral data
{
int64_t prevMdct = mdctSignal[bandStartOffsets[0] + ((bandStartOffsets[0] > 0) && (channelIndex < USAC_MAX_NUM_CHANNELS) ? -1 : 1)];
for (unsigned b = 0; b < nBands; b++)
{
const unsigned bandOffset = __min (nSamplesInFrame, bandStartOffsets[b]);
const unsigned bandWidth = __min (nSamplesInFrame, bandStartOffsets[b + 1]) - bandOffset;
const int32_t* bMdct = &mdctSignal[bandOffset];
const int32_t* bNext = &bMdct[1];
uint64_t sumAbsVal = (bandStartOffsets[b + 1] >= nSamplesInFrame ? abs (bMdct[bandWidth - 1]) : 0);
for (int s = bandWidth - (bandStartOffsets[b + 1] >= nSamplesInFrame ? 1 : 0); s > 0; s--)
{
// based on S. Merdjani, L. Daudet, "Estimation of Frequency from MDCT-Encoded Files,"
// DAFx-03, 2003, http://www.eecs.qmul.ac.uk/legacy/dafx03/proceedings/pdfs/dafx01.pdf
sumAbsVal += complexAbs (*bMdct, int32_t ((*bNext - prevMdct) >> 1));
bNext++; prevMdct = *(bMdct++);
}
// average spectral sample magnitude across frequency band
meanBandValues[b] = uint32_t ((sumAbsVal + (bandWidth >> 1)) / bandWidth);
} // for b
}
if (channelIndex < USAC_MAX_NUM_CHANNELS) m_numAnaBands[channelIndex] = 0; // mark data used
return 0; // no error
}
void SpecAnalyzer::getSpecAnalysisStats (uint32_t avgSpecAnaStats[USAC_MAX_NUM_CHANNELS], const unsigned nChannels)
{
if ((avgSpecAnaStats == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS))
{
return;
}
memcpy (avgSpecAnaStats, m_specAnaStats, nChannels * sizeof (uint32_t));
}
void SpecAnalyzer::getSpectralBandwidth (uint16_t bandwidthOffset[USAC_MAX_NUM_CHANNELS], const unsigned nChannels)
{
if ((bandwidthOffset == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS))
{
return;
}
memcpy (bandwidthOffset, m_bandwidthOff, nChannels * sizeof (uint16_t));
}
unsigned SpecAnalyzer::initSigAnaMemory (LinearPredictor* const linPredictor, const unsigned nChannels, const unsigned maxTransfLength)
{
if (linPredictor == nullptr)
{
return 1; // invalid arguments error
}
m_tnsPredictor = linPredictor;
for (unsigned ch = 0; ch < nChannels; ch++)
{
if ((m_magnSpectra[ch] = (uint32_t*) malloc (maxTransfLength * sizeof (uint32_t))) == nullptr)
{
return 2; // mem. allocation error
}
memset (m_magnSpectra[ch], 0, maxTransfLength * sizeof (uint32_t));
}
return 0; // no error
}
#if SA_OPT_WINDOW_GROUPING
unsigned SpecAnalyzer::optimizeGrouping (const unsigned channelIndex, const unsigned prefBandwidth, const unsigned prefGroupingIndex)
{
const uint32_t* meanAbsValCurr = m_meanAbsValue[channelIndex];
const uint32_t numAnaBandsInCh = m_numAnaBands [channelIndex];
unsigned grpIdxCurr = prefGroupingIndex, maxBands, numBands;
uint64_t energyCurrHF, energyPrefHF;
uint32_t energyCurrLF, energyPrefLF;
unsigned b;
if ((prefBandwidth > 2048) || (grpIdxCurr == 0) || (grpIdxCurr >= 8) || (channelIndex >= USAC_MAX_NUM_CHANNELS) || (numAnaBandsInCh == 0))
{
return 8; // invalid arguments error, or pypassing
}
numBands = numAnaBandsInCh >> 3;
maxBands = numAnaBandsInCh << SA_BW_SHIFT; // available bandwidth, equal to nSamplesInFrame
maxBands = (numBands * __min (maxBands, prefBandwidth) + (maxBands >> 1)) / maxBands;
if (maxBands * numBands == 0) return 8; // low/no BW
if (grpIdxCurr < 7) grpIdxCurr++; // after transient
meanAbsValCurr += grpIdxCurr * numBands;
grpIdxCurr++;
energyPrefLF = meanAbsValCurr[0] >> 1; // - 6 dB
energyPrefHF = 0;
for (b = maxBands - 1; b > 0; b--) // avoid LF band
{
energyPrefHF += meanAbsValCurr[b];
}
energyPrefHF >>= 1; // - 6 dB
do // check whether HF or LF transient starts earlier than preferred grouping index suggests
{
meanAbsValCurr -= numBands;
grpIdxCurr--;
energyCurrLF = meanAbsValCurr[0];
energyCurrHF = 0;
for (b = maxBands - 1; b > 0; b--) // prev. window
{
energyCurrHF += meanAbsValCurr[b];
}
}
while ((grpIdxCurr > 1) && (energyCurrHF >= energyPrefHF) && (energyCurrLF >= energyPrefLF));
return __min (grpIdxCurr, prefGroupingIndex); // final optimized grouping index
}
#endif // SA_OPT_WINDOW_GROUPING
unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_MAX_NUM_CHANNELS],
const int32_t* const mdstSignals[USAC_MAX_NUM_CHANNELS],
const unsigned nChannels, const unsigned nSamplesInFrame, const unsigned samplingRate,
const unsigned lfeChannelIndex /*= USAC_MAX_NUM_CHANNELS*/) // to skip an LFE channel
{
const uint64_t anaBwOffset = SA_BW >> 1;
const unsigned lpcStopBand16k = (samplingRate <= 32000 ? nSamplesInFrame : (32000 * nSamplesInFrame) / samplingRate) >> SA_BW_SHIFT;
const unsigned thresholdSlope = (48000 + SA_EPS * samplingRate) / 96000;
const unsigned thresholdStart = samplingRate >> 15;
if ((mdctSignals == nullptr) || (mdstSignals == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS) || (lfeChannelIndex > USAC_MAX_NUM_CHANNELS) ||
(nSamplesInFrame > 2048) || (nSamplesInFrame <= 127) || (samplingRate < 7350) || (samplingRate > 96000))
{
return 1; // invalid arguments error
}
for (unsigned ch = 0; ch < nChannels; ch++)
{
const int32_t* const chMdct = mdctSignals[ch];
const int32_t* const chMdst = mdstSignals[ch];
uint32_t* const chPrvMagn = m_magnSpectra[ch];
const bool improvedSfmEstim = (chPrvMagn != nullptr);
uint16_t currMC = 0, numMC = 0; // channel average
// --- get L1 norm and max value in each band
uint16_t idxMaxSpec = 0;
uint64_t sumAvgBand = 0;
uint64_t sumMaxBand = 0;
uint32_t valMaxSpec = 0;
int b;
if (ch == lfeChannelIndex) // no analysis
{
m_bandwidthOff[ch] = LFE_MAX;
m_numAnaBands [ch] = 0;
m_specAnaStats[ch] = 0; // flat/stationary frame
continue;
}
m_bandwidthOff[ch] = 0;
m_numAnaBands [ch] = nSamplesInFrame >> SA_BW_SHIFT;
for (b = m_numAnaBands[ch] - 1; b >= 0; b--)
{
const uint16_t offs = b << SA_BW_SHIFT; // start offset of current analysis band
const int32_t* const bMdct = &chMdct[offs];
const int32_t* const bMdst = &chMdst[offs];
uint32_t* const prvMagn = (improvedSfmEstim ? &chPrvMagn[offs] : nullptr);
uint16_t maxAbsIdx = 0;
uint32_t maxAbsVal = 0, tmp = UINT_MAX;
uint64_t sumAbsVal = 0;
uint64_t sumAbsPrv = 0;
uint64_t sumPrdCP = 0, sumPrdCC = 0, sumPrdPP = 0;
double ncp, dcc, dpp;
for (int s = SA_BW - 1; s >= 0; s--)
{
// sum absolute values of complex spectrum, derive L1 norm, peak value, and peak index
const uint64_t absSample = complexAbs (bMdct[s], bMdst[s]);
if (improvedSfmEstim) // correlation between current and previous magnitude spectrum
{
const uint64_t prvSample = prvMagn[s];
sumPrdCP += (absSample * prvSample + anaBwOffset) >> SA_BW_SHIFT;
sumPrdCC += (absSample * absSample + anaBwOffset) >> SA_BW_SHIFT;
sumPrdPP += (prvSample * prvSample + anaBwOffset) >> SA_BW_SHIFT;
sumAbsPrv += prvSample;
prvMagn[s] = (uint32_t) absSample;
}
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max & min
{
if (maxAbsVal < absSample) // update maximum
{
maxAbsVal = (uint32_t) absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // update minimum
{
tmp/*min*/= (uint32_t) absSample;
}
}
} // for s
// bandwidth detection
if ((m_bandwidthOff[ch] == 0) && (maxAbsVal > __max (thresholdSlope * (thresholdStart + b), SA_EPS)))
{
m_bandwidthOff[ch] = __max (maxAbsIdx + 5/*guard*/, SA_BW) + offs;
m_bandwidthOff[ch] = __min (m_bandwidthOff[ch], nSamplesInFrame);
}
// save mean magnitude
tmp/*mean*/ = uint32_t ((sumAbsVal + anaBwOffset) >> SA_BW_SHIFT);
m_meanAbsValue[ch][b] = tmp;
// spectral statistics
if (improvedSfmEstim && (b > 0) && ((unsigned) b < lpcStopBand16k))
{
dcc = double (tmp);
dpp = double ((sumAbsPrv + anaBwOffset) >> SA_BW_SHIFT);
ncp = (sumPrdCP + dcc * dpp) * SA_BW - sumAbsVal * dpp - sumAbsPrv * dcc;
dcc = (sumPrdCC + dcc * dcc) * SA_BW - sumAbsVal * dcc - sumAbsVal * dcc;
dpp = (sumPrdPP + dpp * dpp) * SA_BW - sumAbsPrv * dpp - sumAbsPrv * dpp;
sumPrdCP = uint64_t ((ncp <= 0.0) || (dcc * dpp <= 0.0) ? 0 : 0.5 + (256.0 * ncp * ncp) / (dcc * dpp));
currMC += (uint16_t) __min (UCHAR_MAX, sumPrdCP); numMC++; // temporal correlation sum
}
if (b > 0)
{
sumAvgBand += tmp;
sumMaxBand += maxAbsVal;
}
if (valMaxSpec < maxAbsVal)
{
valMaxSpec = maxAbsVal;
idxMaxSpec = maxAbsIdx + offs;
}
} // for b
// --- spectral analysis statistics for frame
b = 1;
#if SA_IMPROVED_FILT_CALC
if (samplingRate < 27713) sumAvgBand -= m_meanAbsValue[ch][b++];
#endif
while (((unsigned) b + 1 < lpcStopBand16k) && ((uint64_t) m_meanAbsValue[ch][b] * (m_numAnaBands[ch] - 1) > sumAvgBand)) b++;
b = __min (m_bandwidthOff[ch], b << SA_BW_SHIFT);
#if SA_IMPROVED_FILT_CALC
if (samplingRate < 27713) sumAvgBand += m_meanAbsValue[ch][1];
#endif
// obtain prediction gain across spectrum
m_tnsPredGains[ch] = m_tnsPredictor->calcParCorCoeffs (&chMdct[b], __min (m_bandwidthOff[ch], lpcStopBand16k << SA_BW_SHIFT) - b,
MAX_PREDICTION_ORDER, m_parCorCoeffs[ch]);
m_specAnaStats[ch] = packAvgSpecAnalysisStats (sumAvgBand, sumMaxBand, m_tnsPredGains[ch] >> 24, idxMaxSpec, (unsigned) b >> SA_BW_SHIFT);
if (improvedSfmEstim)
{
if (numMC > 1) currMC = (currMC + (numMC >> 1)) / numMC;// smoothed temporal correlation
valMaxSpec = (currMC + m_magnCorrPrev[ch] + 1) >> 1;
m_magnCorrPrev[ch] = (uint8_t) currMC; // update
if (valMaxSpec > ((m_specAnaStats[ch] >> 16) & UCHAR_MAX)) m_specAnaStats[ch] = (m_specAnaStats[ch] & 0xFF00FFFF) | (valMaxSpec << 16);
}
} // for ch
return 0; // no error
}
int16_t SpecAnalyzer::stereoSigAnalysis (const int32_t* const mdctSignal1, const int32_t* const mdctSignal2,
const int32_t* const mdstSignal1, const int32_t* const mdstSignal2,
const unsigned nSamplesMax, const unsigned nSamplesInFrame, const bool shortTransforms,
uint8_t* const stereoCorrValue /*= nullptr*/) // per-band perceptual correlation data
{
const uint64_t anaBwOffset = SA_BW >> 1;
const uint16_t numAnaBands = (shortTransforms ? nSamplesInFrame : nSamplesMax) >> SA_BW_SHIFT;
const uint16_t numAnaModul = (shortTransforms ? numAnaBands >> 3 : numAnaBands + 1);
int16_t b;
if ((mdctSignal1 == nullptr) || (mdctSignal2 == nullptr) || (mdstSignal1 == nullptr) || (mdstSignal2 == nullptr) ||
(nSamplesInFrame > 2048) || (nSamplesMax > 2048) || (numAnaBands == 0) || (numAnaModul == 0))
{
b = SHRT_MIN; // invalid arguments error
}
else
{
uint16_t currPC = 0, numPC = 0; // frame-average correlation
uint64_t sumReM = 0, sumReS = 0;// mid-side RMS distribution
for (b = numAnaBands - 1; b >= 0; b--)
{
const uint16_t anaBandModul = b % numAnaModul; // to exclude first and last window band
const uint16_t offs = b << SA_BW_SHIFT; // start offset of current analysis band
const int32_t* const lbMdct = &mdctSignal1[offs];
const int32_t* const lbMdst = &mdstSignal1[offs];
const int32_t* const rbMdct = &mdctSignal2[offs];
const int32_t* const rbMdst = &mdstSignal2[offs];
uint64_t sumMagnL = 0, sumMagnR = 0; // temporary RMS sums
uint64_t sumPrdLR = 0, sumPrdLL = 0, sumPrdRR = 0;
uint64_t sumRealL = 0, sumRealR = 0;
uint64_t sumRealM = 0, sumRealS = 0, sumPrdMS; // mid-side
double nlr, dll, drr;
for (int s = SA_BW - 1; s >= 0; s--)
{
const uint64_t absMagnL = complexAbs (lbMdct[s], lbMdst[s]);
const uint64_t absMagnR = complexAbs (rbMdct[s], rbMdst[s]);
sumRealL += abs (lbMdct[s]);
sumRealR += abs (rbMdct[s]);
sumRealM += abs (lbMdct[s] + rbMdct[s]); // i.e., 2*mid,
sumRealS += abs (lbMdct[s] - rbMdct[s]); // i.e., 2*side
sumMagnL += absMagnL;
sumMagnR += absMagnR;
sumPrdLR += (absMagnL * absMagnR + anaBwOffset) >> SA_BW_SHIFT;
sumPrdLL += (absMagnL * absMagnL + anaBwOffset) >> SA_BW_SHIFT;
sumPrdRR += (absMagnR * absMagnR + anaBwOffset) >> SA_BW_SHIFT;
} // for s
sumRealL = (sumRealL + anaBwOffset) >> SA_BW_SHIFT; // avg
sumRealR = (sumRealR + anaBwOffset) >> SA_BW_SHIFT;
sumRealM = (sumRealM + anaBwOffset) >> SA_BW_SHIFT;
sumRealS = (sumRealS + anaBwOffset) >> SA_BW_SHIFT;
nlr = double (sumRealL * sumRealR) * 0.46875; // tuned for uncorrelated full-scale noise
sumPrdMS = uint64_t (nlr > double (sumRealM * sumRealS) ? 256.0 : 0.5 + (512.0 * nlr) / __max (1.0, double (sumRealM * sumRealS)));
dll = double ((sumMagnL + anaBwOffset) >> SA_BW_SHIFT);
drr = double ((sumMagnR + anaBwOffset) >> SA_BW_SHIFT);
nlr = (sumPrdLR + dll * drr) * SA_BW - sumMagnL * drr - sumMagnR * dll;
dll = (sumPrdLL + dll * dll) * SA_BW - sumMagnL * dll - sumMagnL * dll;
drr = (sumPrdRR + drr * drr) * SA_BW - sumMagnR * drr - sumMagnR * drr;
sumPrdLR = uint64_t ((nlr <= 0.0) || (dll * drr <= 0.0) ? 0 : 0.5 + (256.0 * nlr * nlr) / (dll * drr));
stereoCorrValue[b] = (uint8_t) __min (UCHAR_MAX, __max (sumPrdMS, sumPrdLR)); // in band
if ((anaBandModul > 0) && (anaBandModul + 1 < numAnaModul)) // in frame (averaged below)
{
currPC += stereoCorrValue[b]; numPC++;
sumReM += sumRealM;
sumReS += sumRealS;
}
} // for b
for (b = numAnaBands; b < int16_t (nSamplesInFrame >> SA_BW_SHIFT); b++)
{
stereoCorrValue[b] = UCHAR_MAX; // to allow joint-stereo coding at very high frequencies
}
if (numPC > 1) currPC = (currPC + (numPC >> 1)) / numPC; // frame's perceptual correlation
b = (int16_t) currPC * (sumReS * 2 > sumReM * 3 ? -1 : 1); // negation implies side > mid
}
return b;
}