prepare M/S stereo

This commit is contained in:
Christian R. Helmrich
2020-03-25 01:00:02 +01:00
parent 7185ac995f
commit e4bc905be2
5 changed files with 377 additions and 88 deletions

View File

@ -240,7 +240,7 @@ unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_M
const unsigned thresholdSlope = (48000 + SA_EPS * samplingRate) / 96000;
const unsigned thresholdStart = samplingRate >> 15;
if ((mdctSignals == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS) || (lfeChannelIndex > USAC_MAX_NUM_CHANNELS) ||
if ((mdctSignals == nullptr) || (mdstSignals == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS) || (lfeChannelIndex > USAC_MAX_NUM_CHANNELS) ||
(nSamplesInFrame > 2048) || (nSamplesInFrame < 2) || (samplingRate < 7350) || (samplingRate > 96000))
{
return 1; // invalid arguments error
@ -249,7 +249,7 @@ unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_M
for (unsigned ch = 0; ch < nChannels; ch++)
{
const int32_t* const chMdct = mdctSignals[ch];
const int32_t* const chMdst = (mdstSignals == nullptr ? nullptr : mdstSignals[ch]);
const int32_t* const chMdst = mdstSignals[ch];
// --- get L1 norm and max value in each band
uint16_t idxMaxSpec = 0;
uint64_t sumAvgBand = 0;
@ -272,61 +272,37 @@ unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_M
{
const uint16_t offs = b << SA_BW_SHIFT; // start offset of current analysis band
const int32_t* const bMdct = &chMdct[offs];
const int32_t* const bMdst = (chMdst == nullptr ? nullptr : &chMdst[offs]);
uint16_t maxAbsIdx = 0;
uint32_t maxAbsVal = 0, tmp = UINT_MAX;
uint64_t sumAbsVal = 0;
const int32_t* const bMdst = &chMdst[offs];
uint16_t maxAbsIdx = 0;
uint32_t maxAbsVal = 0, tmp = UINT_MAX;
uint64_t sumAbsVal = 0;
if (bMdst != nullptr) // complex-valued spectrum
for (int s = SA_BW - 1; s >= 0; s--)
{
for (int s = SA_BW - 1; s >= 0; s--)
{
// sum absolute values of complex signal, derive L1 norm, peak value, and peak index
// sum absolute values of complex spectrum, derive L1 norm, peak value, and peak index
#if SA_EXACT_COMPLEX_ABS
const double complexSqr = (double) bMdct[s] * (double) bMdct[s] + (double) bMdst[s] * (double) bMdst[s];
const uint32_t absSample = uint32_t (sqrt (complexSqr) + 0.5);
const double complexSqr = (double) bMdct[s] * (double) bMdct[s] + (double) bMdst[s] * (double) bMdst[s];
const uint32_t absSample = uint32_t (sqrt (complexSqr) + 0.5);
#else
const uint32_t absReal = abs (bMdct[s]); // Richard Lyons, 1997; en.wikipedia.org/
const uint32_t absImag = abs (bMdst[s]); // wiki/Alpha_max_plus_beta_min_algorithm
const uint32_t absSample = (absReal > absImag ? absReal + ((absImag * 3) >> 3) : absImag + ((absReal * 3) >> 3));
const uint32_t absReal = abs (bMdct[s]); // Richard Lyons, 1997; en.wikipedia.org/
const uint32_t absImag = abs (bMdst[s]); // wiki/Alpha_max_plus_beta_min_algorithm
const uint32_t absSample = (absReal > absImag ? absReal + ((absImag * 3) >> 3) : absImag + ((absReal * 3) >> 3));
#endif
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max/min
{
if (maxAbsVal < absSample) // maximum data
{
maxAbsVal = absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // minimum data
{
tmp/*min*/= absSample;
}
} // b > 0
}
}
else // real-valued spectrum, no imaginary part
{
for (int s = SA_BW - 1; s >= 0; s--)
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max & min
{
// obtain absolute values of real signal, derive L1 norm, peak value, and peak index
const uint32_t absSample = abs (bMdct[s]);
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max/min
if (maxAbsVal < absSample) // update maximum
{
if (maxAbsVal < absSample) // maximum data
{
maxAbsVal = absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // minimum data
{
tmp/*min*/= absSample;
}
maxAbsVal = absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // update minimum
{
tmp/*min*/= absSample;
}
}
}
} // for s
// bandwidth detection
if ((m_bandwidthOff[ch] == 0) && (maxAbsVal > __max (thresholdSlope * (thresholdStart + b), SA_EPS)))
{
@ -362,3 +338,101 @@ unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_M
return 0; // no error
}
int16_t SpecAnalyzer::stereoSigAnalysis (const int32_t* const mdctSignal1, const int32_t* const mdctSignal2,
const int32_t* const mdstSignal1, const int32_t* const mdstSignal2,
const unsigned nSamplesMax, const unsigned nSamplesInFrame, const bool shortTransforms,
uint8_t* const stereoCorrValue /*= nullptr*/) // per-band perceptual correlation data
{
const uint64_t anaBwOffset = SA_BW >> 1;
const uint16_t numAnaBands = (shortTransforms ? nSamplesInFrame : nSamplesMax) >> SA_BW_SHIFT;
const uint16_t numAnaModul = (shortTransforms ? numAnaBands >> 3 : numAnaBands + 1);
int16_t b;
if ((mdctSignal1 == nullptr) || (mdctSignal2 == nullptr) || (mdstSignal1 == nullptr) || (mdstSignal2 == nullptr) ||
(nSamplesInFrame > 2048) || (nSamplesMax > 2048) || (numAnaBands == 0) || (numAnaModul == 0))
{
b = SHRT_MIN; // invalid arguments error
}
else
{
uint16_t currPC = 0, numPC = 0; // frame-average correlation
uint64_t sumReM = 0, sumReS = 0;// mid-side RMS distribution
for (b = numAnaBands - 1; b >= 0; b--)
{
const uint16_t anaBandModul = b % numAnaModul; // to exclude first and last window band
const uint16_t offs = b << SA_BW_SHIFT; // start offset of current analysis band
const int32_t* const lbMdct = &mdctSignal1[offs];
const int32_t* const lbMdst = &mdstSignal1[offs];
const int32_t* const rbMdct = &mdctSignal2[offs];
const int32_t* const rbMdst = &mdstSignal2[offs];
uint64_t sumMagnL = 0, sumMagnR = 0; // temporary RMS sums
uint64_t sumPrdLR = 0, sumPrdLL = 0, sumPrdRR = 0;
uint64_t sumRealL = 0, sumRealR = 0;
uint64_t sumRealM = 0, sumRealS = 0, sumPrdMS; // mid-side
double nlr, dll, drr;
for (int s = SA_BW - 1; s >= 0; s--)
{
const uint32_t absRealL = abs (lbMdct[s]);
const uint32_t absRealR = abs (rbMdct[s]);
#if SA_EXACT_COMPLEX_ABS
const double complexSqrL = (double) lbMdct[s] * (double) lbMdct[s] + (double) lbMdst[s] * (double) lbMdst[s];
const uint32_t absMagnL = uint32_t (sqrt (complexSqrL) + 0.5);
const double complexSqrR = (double) rbMdct[s] * (double) rbMdct[s] + (double) rbMdst[s] * (double) rbMdst[s];
const uint32_t absMagnR = uint32_t (sqrt (complexSqrR) + 0.5);
#else
const uint32_t absImagL = abs (lbMdst[s]); // Richard Lyons, 1997; en.wikipedia.org/
const uint32_t absImagR = abs (rbMdst[s]); // wiki/Alpha_max_plus_beta_min_algorithm
const uint32_t absMagnL = (absRealL > absImagL ? absRealL + ((absImagL * 3) >> 3) : absImagL + ((absRealL * 3) >> 3));
const uint32_t absMagnR = (absRealR > absImagR ? absRealR + ((absImagR * 3) >> 3) : absImagR + ((absRealR * 3) >> 3));
#endif
sumRealL += absRealL;
sumRealR += absRealR;
sumRealM += abs (lbMdct[s] + rbMdct[s]); // i.e., 2*mid,
sumRealS += abs (lbMdct[s] - rbMdct[s]); // i.e., 2*side
sumMagnL += absMagnL;
sumMagnR += absMagnR;
sumPrdLR += ((uint64_t) absMagnL * (uint64_t) absMagnR + anaBwOffset) >> SA_BW_SHIFT;
sumPrdLL += ((uint64_t) absMagnL * (uint64_t) absMagnL + anaBwOffset) >> SA_BW_SHIFT;
sumPrdRR += ((uint64_t) absMagnR * (uint64_t) absMagnR + anaBwOffset) >> SA_BW_SHIFT;
} // for s
sumRealL = (sumRealL + anaBwOffset) >> SA_BW_SHIFT; // avg
sumRealR = (sumRealR + anaBwOffset) >> SA_BW_SHIFT;
sumRealM = (sumRealM + anaBwOffset) >> SA_BW_SHIFT;
sumRealS = (sumRealS + anaBwOffset) >> SA_BW_SHIFT;
nlr = double (sumRealL * sumRealR) * 0.46875; // tuned for uncorrelated full-scale noise
sumPrdMS = uint64_t (nlr > double (sumRealM * sumRealS) ? 256.0 : 0.5 + (512.0 * nlr) / __max (1.0, double (sumRealM * sumRealS)));
dll = double ((sumMagnL + anaBwOffset) >> SA_BW_SHIFT);
drr = double ((sumMagnR + anaBwOffset) >> SA_BW_SHIFT);
nlr = (sumPrdLR + dll * drr) * SA_BW - sumMagnL * drr - sumMagnR * dll;
dll = (sumPrdLL + dll * dll) * SA_BW - sumMagnL * dll - sumMagnL * dll;
drr = (sumPrdRR + drr * drr) * SA_BW - sumMagnR * drr - sumMagnR * drr;
sumPrdLR = uint64_t ((nlr <= 0.0) || (dll * drr <= 0.0) ? 0 : 0.5 + (256.0 * nlr * nlr) / (dll * drr));
stereoCorrValue[b] = (uint8_t) __min (UCHAR_MAX, __max (sumPrdMS, sumPrdLR)); // in band
if ((anaBandModul > 0) && (anaBandModul + 1 < numAnaModul)) // in frame (averaged below)
{
currPC += stereoCorrValue[b]; numPC++;
sumReM += sumRealM;
sumReS += sumRealS;
}
} // for b
for (b = numAnaBands; b < int16_t (nSamplesInFrame >> SA_BW_SHIFT); b++)
{
stereoCorrValue[b] = UCHAR_MAX; // to allow joint-stereo coding at very high frequencies
}
if (numPC > 1) currPC = (currPC + (numPC >> 1)) / numPC; // frame's perceptual correlation
b = (int16_t) currPC * (sumReS * 2 > sumReM * 3 ? -1 : 1); // negation implies side > mid
}
return b;
}