psych fine-tuning

This commit is contained in:
Christian R. Helmrich 2020-07-15 21:00:12 +02:00
parent be52276f05
commit 7270cc6a70
4 changed files with 162 additions and 65 deletions

View File

@ -27,6 +27,13 @@ static inline uint32_t jndModel (const uint32_t val, const uint32_t mean,
return uint32_t (__min ((double) UINT_MAX, res + 0.5));
}
static inline uint32_t squareMeanRoot (const uint32_t value1, const uint32_t value2)
{
const double meanRoot = (sqrt ((double) value1) + sqrt ((double) value2)) * 0.5;
return uint32_t (meanRoot * meanRoot + 0.5);
}
static void jndPowerLawAndPeakSmoothing (uint32_t* const stepSizes, const unsigned nStepSizes,
const uint32_t avgStepSize, const uint8_t sfm, const uint8_t tfm)
{
@ -68,6 +75,9 @@ BitAllocator::BitAllocator ()
m_avgSpecFlat[ch] = 0;
m_avgTempFlat[ch] = 0;
}
m_rateIndex = 0;
m_tempSfbValue = nullptr;
m_tnsPredictor = nullptr;
}
// public functions
@ -139,6 +149,23 @@ uint8_t BitAllocator::getScaleFac (const uint32_t sfbStepSize, const int32_t* co
return __min (SCHAR_MAX, sf);
}
unsigned BitAllocator::initAllocMemory (LinearPredictor* const linPredictor, const uint8_t numSwb, const uint8_t bitRateMode)
{
if (linPredictor == nullptr)
{
return 1; // invalid arguments error
}
m_rateIndex = bitRateMode;
m_tnsPredictor = linPredictor;
if ((m_tempSfbValue = (uint8_t*) malloc (__max (MAX_PREDICTION_ORDER * sizeof (short), numSwb) * sizeof (uint8_t))) == nullptr)
{
return 2; // memory allocation error
}
return 0; // no error
}
unsigned BitAllocator::initSfbStepSizes (const SfbGroupData* const groupData[USAC_MAX_NUM_CHANNELS], const uint8_t numSwbShort,
const uint32_t specAnaStats[USAC_MAX_NUM_CHANNELS],
const uint32_t tempAnaStats[USAC_MAX_NUM_CHANNELS],
@ -164,8 +191,8 @@ unsigned BitAllocator::initSfbStepSizes (const SfbGroupData* const groupData[USA
for (unsigned ch = 0; ch < nChannels; ch++)
{
const SfbGroupData& grpData = *groupData[ch];
const uint32_t maxSfbInCh = grpData.sfbsPerGroup;
const SfbGroupData& grpData = *groupData[ch];
const uint32_t maxSfbInCh = __min (MAX_NUM_SWB_LONG, grpData.sfbsPerGroup);
const uint32_t nBandsInCh = grpData.numWindowGroups * maxSfbInCh;
const uint32_t* rms = grpData.sfbRmsValues;
uint32_t* stepSizes = &sfbStepSizes[ch * numSwbShort * NUM_WINDOW_GROUPS];
@ -322,7 +349,7 @@ unsigned BitAllocator::initSfbStepSizes (const SfbGroupData* const groupData[USA
if ((samplingRate >= 28800) && (samplingRate <= 64000))
{
elw = 36; // 36/32 = 9/8
for (b = HF; b < grpData.sfbsPerGroup; b++) // undo additional high-freq. equal-loudness attenuation
for (b = HF; b < maxSfbInCh; b++) // undo above additional high-frequency equal-loudness attenuation
{
for (unsigned d = b - HF; d > 0; d--)
{
@ -351,8 +378,8 @@ unsigned BitAllocator::initSfbStepSizes (const SfbGroupData* const groupData[USA
for (unsigned ch = 0; ch < nChannels; ch++)
{
const SfbGroupData& grpData = *groupData[ch];
const uint32_t maxSfbInCh = grpData.sfbsPerGroup;
const SfbGroupData& grpData = *groupData[ch];
const uint32_t maxSfbInCh = __min (MAX_NUM_SWB_LONG, grpData.sfbsPerGroup);
const uint32_t nBandsInCh = grpData.numWindowGroups * maxSfbInCh;
const uint32_t chStepSize = m_avgStepSize[ch];
uint32_t* stepSizes = &sfbStepSizes[ch * numSwbShort * NUM_WINDOW_GROUPS];
@ -380,3 +407,99 @@ unsigned BitAllocator::initSfbStepSizes (const SfbGroupData* const groupData[USA
return 0; // no error
}
unsigned BitAllocator::imprSfbStepSizes (const SfbGroupData* const groupData[USAC_MAX_NUM_CHANNELS], const uint8_t numSwbShort,
const int32_t* const mdctSpec[USAC_MAX_NUM_CHANNELS], const unsigned nSamplesInFrame,
const unsigned nChannels, const unsigned samplingRate, uint32_t* const sfbStepSizes,
const unsigned firstChannelIndex, const bool commonWindow /*= false*/,
const uint8_t* const sfbStereoData /*= nullptr*/, const uint8_t stereoConfig /*= 0*/)
{
const uint8_t maxSfbL16k = 16 + __min (35, (9 << 17) / __max (1, samplingRate)); // SFB index at 15.8 kHz
const uint32_t redFactor = __max ((samplingRate < 27713 ? 2 : 1), __min (3, m_rateIndex)) - (stereoConfig >> 3);
const uint32_t redWeight = __min (4, 9 - __min (9, m_rateIndex));
short* const tempCoeffs = (short* const) m_tempSfbValue;
if ((groupData == nullptr) || (mdctSpec == nullptr) || (sfbStepSizes == nullptr) || (nSamplesInFrame > 2048) ||
(numSwbShort < MIN_NUM_SWB_SHORT) || (numSwbShort > MAX_NUM_SWB_SHORT) || (nChannels > USAC_MAX_NUM_CHANNELS) ||
(samplingRate < 7350) || (samplingRate > 96000) || (firstChannelIndex > USAC_MAX_NUM_CHANNELS))
{
return 1; // invalid arguments error
}
for (unsigned ch = firstChannelIndex; ch < firstChannelIndex + nChannels; ch++)
{
const SfbGroupData& grpData = *groupData[ch];
const uint32_t maxSfbInCh = __min (MAX_NUM_SWB_LONG, grpData.sfbsPerGroup);
const bool eightShorts = (grpData.numWindowGroups != 1);
const uint32_t* rms = grpData.sfbRmsValues;
uint32_t* stepSizes = &sfbStepSizes[ch * numSwbShort * NUM_WINDOW_GROUPS];
if ((grpData.numWindowGroups * maxSfbInCh == 0) || (grpData.numWindowGroups > NUM_WINDOW_GROUPS))
{
continue;
}
for (unsigned gr = 0; gr < grpData.numWindowGroups; gr++)
{
const uint16_t* grpOff = &grpData.sfbOffsets[numSwbShort * gr];
const uint8_t* grpSte = (sfbStereoData == nullptr ? nullptr : &sfbStereoData[numSwbShort * gr]);
const uint32_t* grpRms = &rms[numSwbShort * gr];
const uint32_t* refRms = &groupData[firstChannelIndex + nChannels - 1 - ch]->sfbRmsValues[numSwbShort * gr];
uint32_t* grpStepSizes = &stepSizes[numSwbShort * gr];
uint32_t b, grpRmsMin = INT_MAX; // min. RMS value, used for overcoding reduction
uint64_t s = (eightShorts ? (nSamplesInFrame * grpData.windowGroupLength[gr]) >> 1 : nSamplesInFrame << 2);
memset (m_tempSfbValue, UCHAR_MAX, maxSfbInCh * sizeof (uint8_t));
// undercoding reduction for case where large number of coefs is quantized to zero
for (b = 0; b < maxSfbInCh; b++)
{
const uint32_t rmsComp = (grpSte != nullptr && grpSte[b] > 0 ? squareMeanRoot (refRms[b], grpRms[b]) : grpRms[b]);
const uint32_t rmsRef9 = (commonWindow ? refRms[b] >> 9 : rmsComp);
const uint8_t sfbWidth = grpOff[b + 1] - grpOff[b];
if (redWeight > 0 && !eightShorts && sfbWidth > 12) // further reduce step-sizes of transient bands
{
const uint32_t gains = m_tnsPredictor->calcParCorCoeffs (&mdctSpec[ch][grpOff[b]], sfbWidth, MAX_PREDICTION_ORDER, tempCoeffs) >> 24;
m_tempSfbValue[b] = UCHAR_MAX - uint8_t ((512u + gains * gains * redWeight) >> (sfbWidth > 16 ? 10 : 11));
if ((b >= 2) && (m_tempSfbValue[b - 1] < m_tempSfbValue[b]) && (m_tempSfbValue[b - 1] < m_tempSfbValue[b - 2]))
{
m_tempSfbValue[b - 1] = __min (m_tempSfbValue[b], m_tempSfbValue[b - 2]); // remove local peaks
}
}
if (grpRms[b] < grpRmsMin) grpRmsMin = grpRms[b];
#ifndef NO_DTX_MODE
if (m_rateIndex > 0)
#endif
if (rmsComp >= rmsRef9 && (rmsComp < (grpStepSizes[b] >> 1))) // zero-quantized
{
s -= (sfbWidth * redFactor * __min (1u << 11, rmsComp) + (1u << 10)) >> 11;
}
}
if ((samplingRate > 27712) && (b < maxSfbL16k) && !eightShorts) // zeroed HF coefs
{
const uint32_t rmsComp = (grpSte != nullptr && grpSte[b] > 0 ? squareMeanRoot (refRms[b], grpRms[b]) : grpRms[b]);
const uint32_t rmsRef9 = (commonWindow ? refRms[b] >> 9 : rmsComp);
const uint8_t sfbWidth = grpOff[maxSfbL16k] - grpOff[b];
#ifndef NO_DTX_MODE
if (m_rateIndex > 0)
#endif
if (rmsComp >= rmsRef9) // check only first SFB above max_sfb for simplification
{
s -= (sfbWidth * redFactor * __min (1u << 11, rmsComp) + (1u << 10)) >> 11;
}
}
s = (eightShorts ? s / ((nSamplesInFrame * grpData.windowGroupLength[gr]) >> 8) : s / (nSamplesInFrame >> 5));
if (redWeight > 0 && !eightShorts) memset (tempCoeffs /*= m_tempSfbValue*/, UCHAR_MAX, MAX_PREDICTION_ORDER * sizeof (short));
for (b = 0; b < maxSfbInCh; b++) // improve step-sizes by limiting and attenuation
{
grpStepSizes[b] = uint32_t ((__max (grpRmsMin, grpStepSizes[b]) * s * (m_tempSfbValue[b] + 1ui64) - (1u << 14)) >> 15);
}
} // for gr
} // for ch
return 0; // no error
}

View File

@ -12,6 +12,7 @@
#define _BIT_ALLOCATION_H_
#include "exhaleLibPch.h"
#include "linearPrediction.h"
// constants, experimental macros
#define BA_EPS 1
@ -26,23 +27,32 @@ private:
uint32_t m_avgStepSize[USAC_MAX_NUM_CHANNELS];
uint8_t m_avgSpecFlat[USAC_MAX_NUM_CHANNELS];
uint8_t m_avgTempFlat[USAC_MAX_NUM_CHANNELS];
uint8_t m_rateIndex; // preset
uint8_t* m_tempSfbValue;
LinearPredictor* m_tnsPredictor;
public:
// constructor
BitAllocator ();
// destructor
~BitAllocator () { }
~BitAllocator () { MFREE (m_tempSfbValue); }
// public functions
void getChAverageSpecFlat (uint8_t meanSpecFlatInCh[USAC_MAX_NUM_CHANNELS], const unsigned nChannels);
void getChAverageTempFlat (uint8_t meanTempFlatInCh[USAC_MAX_NUM_CHANNELS], const unsigned nChannels);
uint8_t getScaleFac (const uint32_t sfbStepSize, const int32_t* const sfbSignal, const uint8_t sfbWidth,
const uint32_t sfbRmsValue);
unsigned initAllocMemory (LinearPredictor* const linPredictor, const uint8_t numSwb, const uint8_t bitRateMode);
unsigned initSfbStepSizes (const SfbGroupData* const groupData[USAC_MAX_NUM_CHANNELS], const uint8_t numSwbShort,
const uint32_t specAnaStats[USAC_MAX_NUM_CHANNELS],
const uint32_t tempAnaStats[USAC_MAX_NUM_CHANNELS],
const unsigned nChannels, const unsigned samplingRate, uint32_t* const sfbStepSizes,
const unsigned lfeChannelIndex = USAC_MAX_NUM_CHANNELS, const bool tnsDisabled = false);
unsigned imprSfbStepSizes (const SfbGroupData* const groupData[USAC_MAX_NUM_CHANNELS], const uint8_t numSwbShort,
const int32_t* const mdctSpec[USAC_MAX_NUM_CHANNELS], const unsigned nSamplesInFrame,
const unsigned nChannels, const unsigned samplingRate, uint32_t* const sfbStepSizes,
const unsigned firstChannelIndex, const bool commonWindow = false,
const uint8_t* const sfbStereoData = nullptr, const uint8_t stereoConfig = 0);
}; // BitAllocator
#endif // _BIT_ALLOCATION_H_

View File

@ -328,13 +328,6 @@ static inline void findActualBandwidthShort (uint8_t* const maxSfbShort, const u
if (*maxSfbShort > maxSfb) *maxSfbShort = maxSfb;
}
static inline uint32_t squareMeanRoot (const uint32_t value1, const uint32_t value2)
{
const double meanRoot = (sqrt ((double) value1) + sqrt ((double) value2)) * 0.5;
return uint32_t (meanRoot * meanRoot + 0.5);
}
static inline uint8_t stereoCorrGrouping (const SfbGroupData& grpData, const unsigned nSamplesInFrame, uint8_t* stereoCorrData)
{
const uint16_t numWinGroup = grpData.numWindowGroups;
@ -780,7 +773,7 @@ uint32_t ExhaleEncoder::getThr (const unsigned channelIndex, const unsigned sfbI
uint32_t sumSfbLoud = 0;
for (int16_t s = 31; s >= 0; s--) sumSfbLoud += sfbLoudMem[s];
sumSfbLoud = (sumSfbLoud + 16) >> 5;
sumSfbLoud = (sumSfbLoud + 32) >> 6; // -6 dB
return sumSfbLoud * (sumSfbLoud >> (toSamplingRate (m_frequencyIdx) >> 13)); // scaled SMR
}
@ -792,9 +785,9 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
const unsigned nSamplesInFrame = toFrameLength (m_frameLength);
const unsigned samplingRate = toSamplingRate (m_frequencyIdx);
const unsigned lfeChannelIndex = (m_channelConf >= CCI_6_CH ? __max (5, nChannels - 1) : USAC_MAX_NUM_CHANNELS);
const uint32_t maxSfbLong = (samplingRate < 37566 ? 51 /*32 kHz*/ : brModeAndFsToMaxSfbLong (m_bitRateMode, samplingRate));
const uint32_t maxSfbLong = (samplingRate < 37566 ? MAX_NUM_SWB_LONG : brModeAndFsToMaxSfbLong (m_bitRateMode, samplingRate));
const uint64_t scaleSr = (samplingRate < 27713 ? (samplingRate < 24000 ? 32 : 34) - __min (3, m_bitRateMode) : 37) - (nChannels >> 1);
const uint64_t scaleBr = (m_bitRateMode == 0 ? __min (38, 3 + (samplingRate >> 10) + (samplingRate >> 13)) - (nChannels >> 1)
const uint64_t scaleBr = (m_bitRateMode == 0 ? __min (32, 3 + (samplingRate >> 10) + (samplingRate >> 13) - (nChannels >> 1))
: scaleSr - eightTimesSqrt256Minus[256 - m_bitRateMode] - __min (3, (m_bitRateMode - 1) >> 1));
uint32_t* sfbStepSizes = (uint32_t*) m_tempIntBuf;
uint8_t meanSpecFlat[USAC_MAX_NUM_CHANNELS];
@ -828,7 +821,7 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
const unsigned lfConst = (samplingRate < 27713 ? 1 : 2);
const unsigned lfAtten = 4 + b * lfConst; // LF SNR boost, cf my M.Sc. thesis, p. 54
const uint8_t sfbWidth = off[b + 1] - off[b];
const uint64_t scale = scaleBr * __min (32, lfAtten); // rate control part 1
const uint64_t scale = scaleBr * __min (32, lfAtten); // rate control part 1 (SFB)
// scale step-sizes according to VBR mode, then derive scale factors from step-sizes
stepSizes[b] = uint32_t (__max (BA_EPS, ((1u << 9) + stepSizes[b] * scale) >> 10));
@ -839,7 +832,6 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
}
else // SCE or CPE: bandwidth-to-max_sfb mapping, short-window grouping for each channel
{
const uint32_t redFactor = __max ((samplingRate < 27713 ? 2 : 1), __min (3, m_bitRateMode)) - (coreConfig.stereoConfig >> 3);
const bool eightShorts0 = (coreConfig.icsInfoCurr[0].windowSequence == EIGHT_SHORT);
const TnsData& tnsData0 = coreConfig.tnsData[0];
const TnsData& tnsData1 = coreConfig.tnsData[1];
@ -947,6 +939,10 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
}
else memset (coreConfig.stereoDataCurr, 0, (MAX_NUM_SWB_SHORT * NUM_WINDOW_GROUPS) * sizeof (uint8_t));
errorValue |= m_bitAllocator.imprSfbStepSizes (m_scaleFacData, m_numSwbShort, m_mdctSignals, nSamplesInFrame,
nrChannels, samplingRate, sfbStepSizes, ci, coreConfig.commonWindow,
coreConfig.stereoDataCurr, coreConfig.stereoConfig);
for (unsigned ch = 0; ch < nrChannels; ch++) // channel loop
{
SfbGroupData& grpData = coreConfig.groupingData[ch];
@ -965,54 +961,18 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
{
const uint16_t* grpOff = &grpData.sfbOffsets[m_numSwbShort * gr];
const uint32_t* grpRms = &grpData.sfbRmsValues[m_numSwbShort * gr];
const uint32_t* refRms = &coreConfig.groupingData[1 - ch].sfbRmsValues[m_numSwbShort * gr];
uint8_t* grpScaleFacs = &grpData.scaleFactors[m_numSwbShort * gr];
uint32_t* grpStepSizes = &stepSizes[m_numSwbShort * gr];
uint8_t* grpStereoData = &coreConfig.stereoDataCurr[m_numSwbShort * gr];
uint32_t b, grpRmsMin = INT_MAX; // min. RMS value, used for overcoding reduction
// undercoding reduction for case where large number of coefs is quantized to zero
s = (eightShorts ? (nSamplesInFrame * grpData.windowGroupLength[gr]) >> 1 : nSamplesInFrame << 2);
for (b = 0; b < maxSfbCh; b++)
for (unsigned b = 0; b < maxSfbCh; b++)
{
const uint32_t rmsComp = (grpStereoData[b] > 0 ? squareMeanRoot (refRms[b], grpRms[b]) : grpRms[b]);
const uint32_t rmsRef9 = (coreConfig.commonWindow ? refRms[b] >> 9 : rmsComp);
if (grpRms[b] < grpRmsMin) grpRmsMin = grpRms[b];
#ifndef NO_DTX_MODE
if ((m_bitRateMode > 0) || (m_numElements > 1) || (samplingRate > 24000))
if ((m_bitRateMode > 3) || (meanSpecFlat[ci] > (SCHAR_MAX >> 1)) || (rmsComp >= TA_EPS))
#endif
if (rmsComp >= rmsRef9 && (rmsComp < (grpStepSizes[b] >> 1))) // zero-quantized
{
s -= ((grpOff[b + 1] - grpOff[b]) * redFactor * __min (2 * SA_EPS, rmsComp) + SA_EPS) >> 11; // / (2 * SA_EPS)
}
}
if ((samplingRate >= 27713) && (b < maxSfbLong) && !eightShorts) // uncoded coefs
{
const uint32_t rmsComp = (grpStereoData[b] > 0 ? squareMeanRoot (refRms[b], grpRms[b]) : grpRms[b]);
const uint32_t rmsRef9 = (coreConfig.commonWindow ? refRms[b] >> 9 : rmsComp);
#ifndef NO_DTX_MODE
if ((m_bitRateMode > 0) || (m_numElements > 1) || (samplingRate > 24000))
if ((m_bitRateMode > 3) || (meanSpecFlat[ci] > (SCHAR_MAX >> 1)) || (rmsComp >= TA_EPS))
#endif
if (rmsComp >= rmsRef9) // check only first SFB above max_sfb for simplification
{
s -= ((grpOff[maxSfbLong] - grpOff[b]) * redFactor * __min (2 * SA_EPS, rmsComp) + SA_EPS) >> 11; // / (2 * SA_EPS)
}
}
s = (eightShorts ? s / ((nSamplesInFrame * grpData.windowGroupLength[gr]) >> 8) : s / (nSamplesInFrame >> 5));
for (b = 0; b < maxSfbCh; b++)
{
const unsigned lfConst = (samplingRate < 27713 && !eightShorts ? 1 : 2); // LF SNR boost, cf my M.Sc. thesis
const unsigned lfConst = (samplingRate < 27713 && !eightShorts ? 1 : 2); // lfAtten: LF SNR boost, as in my M.Sc. thesis
const unsigned lfAtten = (saveBitRate || b <= 5 ? (eightShorts ? 1 : 4) + b * lfConst : 5 * lfConst - 1 + b + ((b + 5) >> 4));
const uint8_t sfbWidth = grpOff[b + 1] - grpOff[b];
const uint64_t rateFac = mSfmFac * s * __min (32, lfAtten * grpData.numWindowGroups); // rate control part 1
const uint64_t sScaled = ((1u << 24) + __max (grpRmsMin, grpStepSizes[b]) * scaleBr * rateFac) >> 25;
const uint64_t scale = scaleBr * mSfmFac * __min (32, lfAtten * grpData.numWindowGroups); // rate control part 1 (SFB)
// scale step-sizes according to VBR mode & derive scale factors from step-sizes
grpStepSizes[b] = uint32_t (__max (BA_EPS, __min (UINT_MAX, sScaled)));
grpStepSizes[b] = uint32_t (__max (BA_EPS, ((1u << 17) + grpStepSizes[b] * scale) >> 18));
grpScaleFacs[b] = m_bitAllocator.getScaleFac (grpStepSizes[b], &m_mdctSignals[ci][grpOff[b]], sfbWidth, grpRms[b]);
}
@ -1050,7 +1010,7 @@ unsigned ExhaleEncoder::psychBitAllocation () // perceptual bit-allocation via s
for (s = sfbStart; s < maxSfbCh; s++)
{
const double rmsValue = double (grpStereoData[s] > 0 ? squareMeanRoot (refRms[s], grpRms[s]) : grpRms[s]);
const double rmsValue = double (grpStereoData[s] > 0 ? (grpRms[s] + (uint64_t) refRms[s] + 1) >> 1 : grpRms[s]);
const unsigned sfbIdx = s - sfbStart;
m_sfbLoudMem[ch][sfbIdx][m_frameCount & 31] = __max (BA_EPS, uint16_t (sqrt (rmsValue)));
@ -1506,8 +1466,10 @@ unsigned ExhaleEncoder::spectralProcessing () // complete ics_info(), calc TNS
{
if (grpData.windowGroupLength[gr] == 1)
{
const uint8_t tonality = (m_specAnaCurr[ci] >> 16) & UCHAR_MAX;
tnsData.filterOrder[n] = m_linPredictor.calcOptTnsCoeffs (tnsData.coeffParCor[n], tnsData.coeff[n], &tnsData.coeffResLow[n],
tnsData.filterOrder[n], s, (m_specAnaCurr[ci] >> 16) & UCHAR_MAX);
tnsData.filterOrder[n], s, tonality >> (m_tempFlatPrev[ci] >> 5));
tnsData.numFilters[n] = (tnsData.filterOrder[n] > 0 ? 1 : 0);
if ((ch == 0) && (icsCurr.windowSequence == EIGHT_SHORT) && (tnsData.numFilters[n] == 0) && (tnsData.firstTnsWindow == gr))
{
@ -1516,7 +1478,7 @@ unsigned ExhaleEncoder::spectralProcessing () // complete ics_info(), calc TNS
n++;
}
}
ci++;
m_tempFlatPrev[ci++] = (uint8_t) s;
} // for ch
if (coreConfig.commonWindow) // synchronization of all StereoCoreToolInfo() components
@ -1814,8 +1776,7 @@ unsigned ExhaleEncoder::temporalProcessing () // determine time-domain aspects o
errorValue |= m_transform.applyMCLT (m_timeSignals[ci], eightShorts, icsPrev.windowShape != WINDOW_SINE, icsCurr.windowShape != WINDOW_SINE,
wsCurr > LONG_START /*lOL*/, (wsCurr % 3) != ONLY_LONG /*lOR*/, m_mdctSignals[ci], m_mdstSignals[ci]);
m_scaleFacData[ci] = &grpData;
ci++;
m_scaleFacData[ci++] = &grpData;
}
} // for el
@ -1880,6 +1841,7 @@ ExhaleEncoder::ExhaleEncoder (int32_t* const inputPcmData, unsigned ch
m_specFlatPrev[ch] = 0;
m_tempAnaCurr[ch] = 0;
m_tempAnaNext[ch] = 0;
m_tempFlatPrev[ch] = 0;
m_timeSignals[ch] = nullptr;
m_tranLocCurr[ch] = -1;
m_tranLocNext[ch] = -1;
@ -2115,10 +2077,11 @@ unsigned ExhaleEncoder::initEncoder (unsigned char* const audioConfigBuffer, uin
// initialize coder class memory
m_tempIntBuf = m_timeSignals[0];
if (m_bitAllocator.initAllocMemory (&m_linPredictor, numSwbOffsetL[m_swbTableIdx] - 1, m_bitRateMode) > 0 ||
#if EC_TRELLIS_OPT_CODING
if (m_sfbQuantizer.initQuantMemory (nSamplesInFrame, numSwbOffsetL[m_swbTableIdx] - 1, m_bitRateMode, toSamplingRate (m_frequencyIdx)) > 0 ||
m_sfbQuantizer.initQuantMemory (nSamplesInFrame, numSwbOffsetL[m_swbTableIdx] - 1, m_bitRateMode, toSamplingRate (m_frequencyIdx)) > 0 ||
#else
if (m_sfbQuantizer.initQuantMemory (nSamplesInFrame) > 0 ||
m_sfbQuantizer.initQuantMemory (nSamplesInFrame) > 0 ||
#endif
m_specAnalyzer.initSigAnaMemory (&m_linPredictor, m_bitRateMode <= 4 ? nChannels : 0, nSamplesInFrame) > 0 ||
m_transform.initConstants (m_tempIntBuf, m_timeWindowL, m_timeWindowS, nSamplesInFrame) > 0)

View File

@ -106,6 +106,7 @@ private:
TempAnalyzer m_tempAnalyzer; // for temporal analysis
uint32_t m_tempAnaCurr[USAC_MAX_NUM_CHANNELS];
uint32_t m_tempAnaNext[USAC_MAX_NUM_CHANNELS];
uint8_t m_tempFlatPrev[USAC_MAX_NUM_CHANNELS];
int32_t* m_tempIntBuf; // temporary int32 buffer
int32_t* m_timeSignals[USAC_MAX_NUM_CHANNELS];
#if !RESTRICT_TO_AAC