add source code

This commit is contained in:
Christian R. Helmrich
2020-01-02 02:05:09 +01:00
parent 30f3efc66e
commit 2e1a6c97b3
47 changed files with 9322 additions and 0 deletions

342
src/lib/specAnalysis.cpp Normal file
View File

@ -0,0 +1,342 @@
/* specAnalysis.cpp - source file for class providing spectral analysis of MCLT signals
* written by C. R. Helmrich, last modified in 2019 - see License.htm for legal notices
*
* The copyright in this software is being made available under a Modified BSD-Style License
* and comes with ABSOLUTELY NO WARRANTY. This software may be subject to other third-
* party rights, including patent rights. No such rights are granted under this License.
*
* Copyright (c) 2018-2020 Christian R. Helmrich, project ecodis. All rights reserved.
*/
#include "exhaleLibPch.h"
#include "specAnalysis.h"
// static helper function
static inline uint32_t packAvgSpecAnalysisStats (const uint64_t sumAvgBand, const uint64_t sumMaxBand,
const unsigned char predGain,
const uint16_t idxMaxSpec, const uint16_t idxLpStart)
{
// temporal flatness, normalized for a value of 256 for a linear prediction gain of 1 (0 dB)
const unsigned flatTemp = predGain;
// spectral flatness, normalized for a value of 256 for steady low or mid-frequency sinusoid
const int32_t flatSpec = 256 - int (((sumAvgBand + SA_EPS) * 402) / (sumMaxBand + SA_EPS));
return (flatTemp << 24) | (CLIP_UCHAR (flatSpec) << 16) | (__min (2047, idxMaxSpec) << 5) | __min (31, idxLpStart);
}
// constructor
SpecAnalyzer::SpecAnalyzer ()
{
for (unsigned ch = 0; ch < USAC_MAX_NUM_CHANNELS; ch++)
{
m_bandwidthOff[ch] = 0;
m_numAnaBands [ch] = 0;
m_specAnaStats[ch] = 0;
memset (m_parCorCoeffs[ch], 0, MAX_PREDICTION_ORDER * sizeof (short));
}
m_tnsPredictor = nullptr;
}
// public functions
unsigned SpecAnalyzer::getLinPredCoeffs (short parCorCoeffs[MAX_PREDICTION_ORDER], const unsigned channelIndex) // returns best filter order
{
unsigned bestOrder = MAX_PREDICTION_ORDER, predGainCurr, predGainPrev;
if ((parCorCoeffs == nullptr) || (channelIndex >= USAC_MAX_NUM_CHANNELS))
{
return 0; // invalid arguments error
}
memcpy (parCorCoeffs, m_parCorCoeffs[channelIndex], MAX_PREDICTION_ORDER * sizeof (short));
predGainCurr = (m_tnsPredGains[channelIndex] >> 24) & UCHAR_MAX;
predGainPrev = (m_tnsPredGains[channelIndex] >> 16) & UCHAR_MAX;
while ((bestOrder > 1) && (predGainPrev >= predGainCurr)) // find lowest-order gain maximum
{
bestOrder--;
predGainCurr = predGainPrev;
predGainPrev = (m_tnsPredGains[channelIndex] >> (8 * bestOrder - 16)) & UCHAR_MAX;
}
return ((bestOrder == 1) && (m_parCorCoeffs[channelIndex][0] == 0) ? 0 : bestOrder);
}
unsigned SpecAnalyzer::getMeanAbsValues (const int32_t* const mdctSignal, const int32_t* const mdstSignal, const unsigned nSamplesInFrame,
const unsigned channelIndex, const uint16_t* const bandStartOffsets, const unsigned nBands,
uint32_t* const meanBandValues)
{
if ((mdctSignal == nullptr) || (bandStartOffsets == nullptr) || (meanBandValues == nullptr) || (channelIndex >= USAC_MAX_NUM_CHANNELS) ||
(nSamplesInFrame > 2048) || (nSamplesInFrame < 2) || (nBands > nSamplesInFrame))
{
return 1; // invalid arguments error
}
if (mdstSignal != nullptr) // use complex-valued spectral data
{
for (unsigned b = 0; b < nBands; b++)
{
const unsigned bandOffset = __min (nSamplesInFrame, bandStartOffsets[b]);
const unsigned bandWidth = __min (nSamplesInFrame, bandStartOffsets[b + 1]) - bandOffset;
const unsigned anaBandIdx = bandOffset >> SA_BW_SHIFT;
if ((anaBandIdx < m_numAnaBands[channelIndex]) && (bandOffset == (anaBandIdx << SA_BW_SHIFT)) && ((bandWidth & (SA_BW - 1)) == 0))
{
const uint32_t* const anaAbsVal = &m_meanAbsValue[channelIndex][anaBandIdx];
// data available from previous call to spectralAnalysis
meanBandValues[b] = (bandWidth == SA_BW ? *anaAbsVal : uint32_t (((int64_t) anaAbsVal[0] + (int64_t) anaAbsVal[1] + 1) >> 1));
}
else // no previous data available, compute mean magnitude
{
const int32_t* const bMdct = &mdctSignal[bandOffset];
const int32_t* const bMdst = &mdstSignal[bandOffset];
uint64_t sumAbsVal = 0;
for (int s = bandWidth - 1; s >= 0; s--)
{
#if SA_EXACT_COMPLEX_ABS
const double complexSqr = (double) bMdct[s] * (double) bMdct[s] + (double) bMdst[s] * (double) bMdst[s];
const unsigned absSample = unsigned (sqrt (complexSqr) + 0.5);
#else
const unsigned absReal = abs (bMdct[s]); // Richard Lyons, 1997; en.wikipedia.org/
const unsigned absImag = abs (bMdst[s]); // wiki/Alpha_max_plus_beta_min_algorithm
const unsigned absSample = (absReal > absImag ? absReal + ((absImag * 3) >> 3) : absImag + ((absReal * 3) >> 3));
#endif
sumAbsVal += absSample;
}
// average spectral sample magnitude across current band
meanBandValues[b] = uint32_t ((sumAbsVal + (bandWidth >> 1)) / bandWidth);
}
} // for b
}
else // no imaginary part available, real-valued spectral data
{
for (unsigned b = 0; b < nBands; b++)
{
const unsigned bandOffset = __min (nSamplesInFrame, bandStartOffsets[b]);
const unsigned bandWidth = __min (nSamplesInFrame, bandStartOffsets[b + 1]) - bandOffset;
const int32_t* const bMdct = &mdctSignal[bandOffset];
uint64_t sumAbsVal = 0;
for (int s = bandWidth - 1; s >= 0; s--)
{
const unsigned absSample = abs (bMdct[s]);
sumAbsVal += absSample;
}
// average spectral sample magnitude across frequency band
meanBandValues[b] = uint32_t ((sumAbsVal + (bandWidth >> 1)) / bandWidth);
} // for b
}
m_numAnaBands[channelIndex] = 0; // mark spectral data as used
return 0; // no error
}
void SpecAnalyzer::getSpecAnalysisStats (uint32_t avgSpecAnaStats[USAC_MAX_NUM_CHANNELS], const unsigned nChannels)
{
if ((avgSpecAnaStats == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS))
{
return;
}
memcpy (avgSpecAnaStats, m_specAnaStats, nChannels * sizeof (uint32_t));
}
void SpecAnalyzer::getSpectralBandwidth (uint16_t bandwidthOffset[USAC_MAX_NUM_CHANNELS], const unsigned nChannels)
{
if ((bandwidthOffset == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS))
{
return;
}
memcpy (bandwidthOffset, m_bandwidthOff, nChannels * sizeof (uint16_t));
}
unsigned SpecAnalyzer::initLinPredictor (LinearPredictor* const linPredictor)
{
if (linPredictor == nullptr)
{
return 1; // invalid arguments error
}
m_tnsPredictor = linPredictor;
return 0; // no error
}
#if SA_OPT_WINDOW_GROUPING
unsigned SpecAnalyzer::optimizeGrouping (const unsigned channelIndex, const unsigned prefBandwidth, const unsigned prefGroupingIndex)
{
const uint32_t* meanAbsValCurr = m_meanAbsValue[channelIndex];
const uint32_t numAnaBandsInCh = m_numAnaBands [channelIndex];
unsigned grpIdxCurr = prefGroupingIndex, maxBands, numBands;
uint64_t energyCurrHF, energyPrefHF;
uint32_t energyCurrLF, energyPrefLF;
unsigned b;
if ((prefBandwidth > 2048) || (grpIdxCurr == 0) || (grpIdxCurr >= 8) || (channelIndex >= USAC_MAX_NUM_CHANNELS) || (numAnaBandsInCh == 0))
{
return 8; // invalid arguments error, or pypassing
}
numBands = numAnaBandsInCh >> 3;
maxBands = numAnaBandsInCh << SA_BW_SHIFT; // available bandwidth, equal to nSamplesInFrame
maxBands = (numBands * __min (maxBands, prefBandwidth) + (maxBands >> 1)) / maxBands;
if (maxBands * numBands == 0) return 8; // low/no BW
if (grpIdxCurr < 7) grpIdxCurr++; // after transient
meanAbsValCurr += grpIdxCurr * numBands;
grpIdxCurr++;
energyPrefLF = meanAbsValCurr[0] >> 1; // - 6 dB
energyPrefHF = 0;
for (b = maxBands - 1; b > 0; b--) // avoid LF band
{
energyPrefHF += meanAbsValCurr[b];
}
energyPrefHF >>= 1; // - 6 dB
do // check whether HF or LF transient starts earlier than preferred grouping index suggests
{
meanAbsValCurr -= numBands;
grpIdxCurr--;
energyCurrLF = meanAbsValCurr[0];
energyCurrHF = 0;
for (b = maxBands - 1; b > 0; b--) // prev. window
{
energyCurrHF += meanAbsValCurr[b];
}
}
while ((grpIdxCurr > 1) && (energyCurrHF >= energyPrefHF) && (energyCurrLF >= energyPrefLF));
return __min (grpIdxCurr, prefGroupingIndex); // final optimized grouping index
}
#endif // SA_OPT_WINDOW_GROUPING
unsigned SpecAnalyzer::spectralAnalysis (const int32_t* const mdctSignals[USAC_MAX_NUM_CHANNELS],
const int32_t* const mdstSignals[USAC_MAX_NUM_CHANNELS],
const unsigned nChannels, const unsigned nSamplesInFrame, const unsigned samplingRate,
const unsigned lfeChannelIndex /*= USAC_MAX_NUM_CHANNELS*/) // to skip an LFE channel
{
const unsigned lpcStopBand16k = (samplingRate <= 32000 ? nSamplesInFrame : (32000 * nSamplesInFrame) / samplingRate) >> SA_BW_SHIFT;
const unsigned thresholdSlope = (48000 + SA_EPS * samplingRate) / 96000;
const unsigned thresholdStart = samplingRate >> 15;
if ((mdctSignals == nullptr) || (nChannels > USAC_MAX_NUM_CHANNELS) || (lfeChannelIndex > USAC_MAX_NUM_CHANNELS) ||
(nSamplesInFrame > 2048) || (nSamplesInFrame < 2) || (samplingRate < 7350) || (samplingRate > 96000))
{
return 1; // invalid arguments error
}
for (unsigned ch = 0; ch < nChannels; ch++)
{
const int32_t* const chMdct = mdctSignals[ch];
const int32_t* const chMdst = (mdstSignals == nullptr ? nullptr : mdstSignals[ch]);
// --- get L1 norm and max value in each band
uint16_t idxMaxSpec = 0;
uint64_t sumAvgBand = 0;
uint64_t sumMaxBand = 0;
uint32_t valMaxSpec = 0;
int b;
if (ch == lfeChannelIndex) // no analysis
{
m_bandwidthOff[ch] = LFE_MAX;
m_numAnaBands [ch] = 0;
m_specAnaStats[ch] = 0; // flat/stationary frame
continue;
}
m_bandwidthOff[ch] = 0;
m_numAnaBands [ch] = nSamplesInFrame >> SA_BW_SHIFT;
for (b = m_numAnaBands[ch] - 1; b >= 0; b--)
{
const uint16_t offs = b << SA_BW_SHIFT; // start offset of current analysis band
const int32_t* const bMdct = &chMdct[offs];
const int32_t* const bMdst = (chMdst == nullptr ? nullptr : &chMdst[offs]);
uint16_t maxAbsIdx = 0;
uint32_t maxAbsVal = 0, tmp = UINT_MAX;
uint64_t sumAbsVal = 0;
if (bMdst != nullptr) // complex-valued spectrum
{
for (int s = SA_BW - 1; s >= 0; s--)
{
// sum absolute values of complex signal, derive L1 norm, peak value, and peak index
#if SA_EXACT_COMPLEX_ABS
const double complexSqr = (double) bMdct[s] * (double) bMdct[s] + (double) bMdst[s] * (double) bMdst[s];
const unsigned absSample = unsigned (sqrt (complexSqr) + 0.5);
#else
const unsigned absReal = abs (bMdct[s]); // Richard Lyons, 1997; en.wikipedia.org/
const unsigned absImag = abs (bMdst[s]); // wiki/Alpha_max_plus_beta_min_algorithm
const unsigned absSample = (absReal > absImag ? absReal + ((absImag * 3) >> 3) : absImag + ((absReal * 3) >> 3));
#endif
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max/min
{
if (maxAbsVal < absSample) // maximum data
{
maxAbsVal = absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // minimum data
{
tmp/*min*/= absSample;
}
} // b > 0
}
}
else // real-valued spectrum, no imaginary part
{
for (int s = SA_BW - 1; s >= 0; s--)
{
// obtain absolute values of real signal, derive L1 norm, peak value, and peak index
const unsigned absSample = abs (bMdct[s]);
sumAbsVal += absSample;
if (offs + s > 0) // exclude DC from max/min
{
if (maxAbsVal < absSample) // maximum data
{
maxAbsVal = absSample;
maxAbsIdx = (uint16_t) s;
}
if (tmp/*min*/> absSample) // minimum data
{
tmp/*min*/= absSample;
}
}
}
}
// bandwidth detection
if ((m_bandwidthOff[ch] == 0) && (maxAbsVal > __max (thresholdSlope * (thresholdStart + b), SA_EPS)))
{
m_bandwidthOff[ch] = __max (maxAbsIdx + 5/*guard*/, SA_BW) + offs;
m_bandwidthOff[ch] = __min (m_bandwidthOff[ch], nSamplesInFrame);
}
// save mean magnitude
tmp/*mean*/ = uint32_t ((sumAbsVal + (1 << (SA_BW_SHIFT - 1))) >> SA_BW_SHIFT);
m_meanAbsValue[ch][b] = tmp;
// spectral statistics
if (b > 0)
{
sumAvgBand += tmp;
sumMaxBand += maxAbsVal;
}
if (valMaxSpec < maxAbsVal)
{
valMaxSpec = maxAbsVal;
idxMaxSpec = maxAbsIdx + offs;
}
} // for b
// --- spectral analysis statistics for frame
b = 1;
while (((unsigned) b + 1 < lpcStopBand16k) && ((uint64_t) m_meanAbsValue[ch][b] * (m_numAnaBands[ch] - 1) > sumAvgBand)) b++;
b = __min (m_bandwidthOff[ch], b << SA_BW_SHIFT);
// obtain prediction gain across spectrum
m_tnsPredGains[ch] = m_tnsPredictor->calcParCorCoeffs (&chMdct[b], __min (m_bandwidthOff[ch], lpcStopBand16k << SA_BW_SHIFT) - b,
MAX_PREDICTION_ORDER, m_parCorCoeffs[ch]);
m_specAnaStats[ch] = packAvgSpecAnalysisStats (sumAvgBand, sumMaxBand, m_tnsPredGains[ch] >> 24, idxMaxSpec, (unsigned) b >> SA_BW_SHIFT);
} // for ch
return 0; // no error
}