PDF4QT/Pdf4QtLib/sources/pdfcolorspaces.cpp

2541 lines
98 KiB
C++

// Copyright (C) 2019-2021 Jakub Melka
//
// This file is part of PDF4QT.
//
// PDF4QT is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// with the written consent of the copyright owner, any later version.
//
// PDF4QT is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDF4QT. If not, see <https://www.gnu.org/licenses/>.
#include "pdfcolorspaces.h"
#include "pdfobject.h"
#include "pdfdocument.h"
#include "pdfexception.h"
#include "pdfutils.h"
#include "pdfpattern.h"
#include "pdfcms.h"
#include "pdfexecutionpolicy.h"
#include <QCryptographicHash>
#include <execution>
namespace pdf
{
static PDFColorComponent getDeterminant(const PDFColorComponentMatrix_3x3& matrix)
{
const PDFColorComponent a_11 = matrix.getValue(0, 0);
const PDFColorComponent a_12 = matrix.getValue(0, 1);
const PDFColorComponent a_13 = matrix.getValue(0, 2);
const PDFColorComponent a_21 = matrix.getValue(1, 0);
const PDFColorComponent a_22 = matrix.getValue(1, 1);
const PDFColorComponent a_23 = matrix.getValue(1, 2);
const PDFColorComponent a_31 = matrix.getValue(2, 0);
const PDFColorComponent a_32 = matrix.getValue(2, 1);
const PDFColorComponent a_33 = matrix.getValue(2, 2);
return -a_13* a_22 * a_31 + a_12 * a_23 * a_31 + a_13 * a_21 * a_32 - a_11 * a_23 * a_32 - a_12 * a_21 * a_33 + a_11 * a_22 * a_33;
}
PDFColorComponentMatrix_3x3 getInverseMatrix(const PDFColorComponentMatrix_3x3& matrix)
{
const PDFColorComponent a_11 = matrix.getValue(0, 0);
const PDFColorComponent a_12 = matrix.getValue(0, 1);
const PDFColorComponent a_13 = matrix.getValue(0, 2);
const PDFColorComponent a_21 = matrix.getValue(1, 0);
const PDFColorComponent a_22 = matrix.getValue(1, 1);
const PDFColorComponent a_23 = matrix.getValue(1, 2);
const PDFColorComponent a_31 = matrix.getValue(2, 0);
const PDFColorComponent a_32 = matrix.getValue(2, 1);
const PDFColorComponent a_33 = matrix.getValue(2, 2);
const PDFColorComponent determinant = -a_13* a_22 * a_31 + a_12 * a_23 * a_31 + a_13 * a_21 * a_32 - a_11 * a_23 * a_32 - a_12 * a_21 * a_33 + a_11 * a_22 * a_33;
const PDFColorComponent coefficient = !qIsNull(determinant) ? 1.0 / determinant : 0.0;
PDFColorComponentMatrix_3x3 inversedMatrix { a_22 * a_33 - a_23 * a_32, a_13 * a_32 - a_12 * a_33, a_12 * a_23 - a_13 * a_22,
a_23 * a_31 - a_21 * a_33, a_11 * a_33 - a_13 * a_31, a_13 * a_21 - a_11 * a_23,
a_21 * a_32 - a_22 * a_31, a_12 * a_31 - a_11 * a_32, a_11 * a_22 - a_12 * a_21 };
inversedMatrix.multiplyByFactor(coefficient);
return inversedMatrix;
}
PDFColor PDFDeviceGrayColorSpace::getDefaultColorOriginal() const
{
return PDFColor(0.0f);
}
QColor PDFDeviceGrayColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(cms);
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
PDFColorComponent component = clip01(color[0]);
// If color management system handles the color transformation, then use it,
// otherwise fall back to the generic case.
QColor cmsColor = cms->getColorFromDeviceGray(color, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
QColor result(QColor::Rgb);
result.setRgbF(component, component, component, 1.0);
return result;
}
size_t PDFDeviceGrayColorSpace::getColorComponentCount() const
{
return 1;
}
void PDFDeviceGrayColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
if (!cms->fillRGBBufferFromDeviceGray(colors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
PDFColor PDFDeviceRGBColorSpace::getDefaultColorOriginal() const
{
return PDFColor(0.0f, 0.0f, 0.0f);
}
QColor PDFDeviceRGBColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
PDFColorComponent r = clip01(color[0]);
PDFColorComponent g = clip01(color[1]);
PDFColorComponent b = clip01(color[2]);
PDFColor clippedColor(r, g, b);
QColor cmsColor = cms->getColorFromDeviceRGB(clippedColor, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
QColor result(QColor::Rgb);
result.setRgbF(r, g, b, 1.0);
return result;
}
size_t PDFDeviceRGBColorSpace::getColorComponentCount() const
{
return 3;
}
void PDFDeviceRGBColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
if (!cms->fillRGBBufferFromDeviceRGB(colors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
PDFColor PDFDeviceCMYKColorSpace::getDefaultColorOriginal() const
{
return PDFColor(0.0f, 0.0f, 0.0f, 1.0f);
}
QColor PDFDeviceCMYKColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
PDFColorComponent c = clip01(color[0]);
PDFColorComponent m = clip01(color[1]);
PDFColorComponent y = clip01(color[2]);
PDFColorComponent k = clip01(color[3]);
PDFColor clippedColor(c, m, y, k);
QColor cmsColor = cms->getColorFromDeviceCMYK(clippedColor, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
QColor result(QColor::Cmyk);
result.setCmykF(c, m, y, k, 1.0);
return result;
}
size_t PDFDeviceCMYKColorSpace::getColorComponentCount() const
{
return 4;
}
void PDFDeviceCMYKColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
if (!cms->fillRGBBufferFromDeviceCMYK(colors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
bool PDFAbstractColorSpace::equals(const PDFAbstractColorSpace* other) const
{
return getColorSpace() == other->getColorSpace();
}
bool PDFAbstractColorSpace::isBlendColorSpace() const
{
switch (getColorSpace())
{
case pdf::PDFAbstractColorSpace::ColorSpace::DeviceGray:
case pdf::PDFAbstractColorSpace::ColorSpace::DeviceRGB:
case pdf::PDFAbstractColorSpace::ColorSpace::DeviceCMYK:
case pdf::PDFAbstractColorSpace::ColorSpace::CalGray:
case pdf::PDFAbstractColorSpace::ColorSpace::CalRGB:
case pdf::PDFAbstractColorSpace::ColorSpace::ICCBased:
return true;
default:
return false;
}
}
QColor PDFAbstractColorSpace::getDefaultColor(const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
return getColor(getDefaultColorOriginal(), cms, intent, reporter, true);
}
QImage PDFAbstractColorSpace::getImage(const PDFImageData& imageData,
const PDFImageData& softMask,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter) const
{
if (imageData.isValid())
{
switch (imageData.getMaskingType())
{
case PDFImageData::MaskingType::None:
{
QImage image(imageData.getWidth(), imageData.getHeight(), QImage::Format_RGB888);
image.fill(QColor(Qt::white));
unsigned int componentCount = imageData.getComponents();
if (componentCount != getColorComponentCount())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for color space. Color space has %1 colors. Provided color count is %4.").arg(getColorComponentCount()).arg(componentCount));
}
const std::vector<PDFReal>& decode = imageData.getDecode();
if (!decode.empty() && decode.size() != componentCount * 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid size of the decode array. Expected %1, actual %2.").arg(componentCount * 2).arg(decode.size()));
}
const unsigned int imageWidth = imageData.getWidth();
const unsigned int imageHeight = imageData.getHeight();
QMutex exceptionMutex;
std::optional<PDFException> exception;
auto transformPixelLine = [&](unsigned int i)
{
try
{
PDFBitReader reader(&imageData.getData(), imageData.getBitsPerComponent());
reader.seek(i * imageData.getStride());
const double max = reader.max();
const double coefficient = 1.0 / max;
unsigned char* outputLine = image.scanLine(i);
std::vector<float> inputColors(imageWidth * componentCount, 0.0f);
auto itInputColor = inputColors.begin();
for (unsigned int j = 0; j < imageData.getWidth(); ++j)
{
for (unsigned int k = 0; k < componentCount; ++k)
{
PDFReal value = reader.read();
// Interpolate value, if it is not empty
if (!decode.empty())
{
*itInputColor++ = interpolate(value, 0.0, max, decode[2 * k], decode[2 * k + 1]);
}
else
{
*itInputColor++ = value * coefficient;
}
}
}
fillRGBBuffer(inputColors, outputLine, intent, cms, reporter);
}
catch (PDFException lineException)
{
QMutexLocker lock(&exceptionMutex);
if (!exception)
{
exception = lineException;
}
}
};
auto range = PDFIntegerRange<unsigned int>(0, imageHeight);
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, range.begin(), range.end(), transformPixelLine);
if (exception)
{
throw *exception;
}
return image;
}
case PDFImageData::MaskingType::SoftMask:
{
const bool hasMatte = !softMask.getMatte().empty();
QImage image(imageData.getWidth(), imageData.getHeight(), hasMatte ? QImage::Format_RGBA8888_Premultiplied : QImage::Format_RGBA8888);
image.fill(QColor(Qt::white));
unsigned int componentCount = imageData.getComponents();
if (componentCount != getColorComponentCount())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for color space. Color space has %1 colors. Provided color count is %4.").arg(getColorComponentCount()).arg(componentCount));
}
const std::vector<PDFReal>& decode = imageData.getDecode();
if (!decode.empty() && decode.size() != componentCount * 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid size of the decode array. Expected %1, actual %2.").arg(componentCount * 2).arg(decode.size()));
}
const unsigned int imageWidth = imageData.getWidth();
const unsigned int imageHeight = imageData.getHeight();
QImage alphaMask = createAlphaMask(softMask);
if (alphaMask.size() != image.size())
{
// Scale the alpha mask, if it is masked
alphaMask = alphaMask.scaled(image.size());
}
QMutex exceptionMutex;
std::optional<PDFException> exception;
auto transformPixelLine = [&](unsigned int i)
{
try
{
PDFBitReader reader(&imageData.getData(), imageData.getBitsPerComponent());
reader.seek(i * imageData.getStride());
const double max = reader.max();
const double coefficient = 1.0 / max;
unsigned char* outputLine = image.scanLine(i);
unsigned char* alphaLine = alphaMask.scanLine(i);
std::vector<float> inputColors(imageWidth * componentCount, 0.0f);
std::vector<unsigned char> outputColors(imageWidth * 3, 0);
auto itInputColor = inputColors.begin();
for (unsigned int j = 0; j < imageData.getWidth(); ++j)
{
for (unsigned int k = 0; k < componentCount; ++k)
{
PDFReal value = reader.read();
// Interpolate value, if it is not empty
if (!decode.empty())
{
*itInputColor++ = interpolate(value, 0.0, max, decode[2 * k], decode[2 * k + 1]);
}
else
{
*itInputColor++ = value * coefficient;
}
}
}
fillRGBBuffer(inputColors, outputColors.data(), intent, cms, reporter);
const unsigned char* transformedLine = outputColors.data();
for (unsigned int i = 0; i < imageWidth; ++i)
{
*outputLine++ = *transformedLine++;
*outputLine++ = *transformedLine++;
*outputLine++ = *transformedLine++;
*outputLine++ = *alphaLine++;
}
}
catch (PDFException lineException)
{
QMutexLocker lock(&exceptionMutex);
if (!exception)
{
exception = lineException;
}
}
};
auto range = PDFIntegerRange<unsigned int>(0, imageHeight);
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, range.begin(), range.end(), transformPixelLine);
if (exception)
{
throw *exception;
}
return image;
}
case PDFImageData::MaskingType::ColorKeyMasking:
{
QImage image(imageData.getWidth(), imageData.getHeight(), QImage::Format_RGBA8888);
image.fill(QColor(Qt::transparent));
unsigned int componentCount = imageData.getComponents();
if (componentCount != getColorComponentCount())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for color space. Color space has %1 colors. Provided color count is %4.").arg(getColorComponentCount()).arg(componentCount));
}
Q_ASSERT(componentCount > 0);
const std::vector<PDFInteger>& colorKeyMask = imageData.getColorKeyMask();
if (colorKeyMask.size() / 2 != componentCount)
{
throw PDFException(PDFTranslationContext::tr("Invalid number of color components in color key mask. Expected %1, provided %2.").arg(2 * componentCount).arg(colorKeyMask.size()));
}
const std::vector<PDFReal>& decode = imageData.getDecode();
if (!decode.empty() && decode.size() != componentCount * 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid size of the decoded array. Expected %1, actual %2.").arg(componentCount * 2).arg(decode.size()));
}
PDFBitReader reader(&imageData.getData(), imageData.getBitsPerComponent());
PDFColor color;
color.resize(componentCount);
const double max = reader.max();
const double coefficient = 1.0 / max;
for (unsigned int i = 0, rowCount = imageData.getHeight(); i < rowCount; ++i)
{
reader.seek(i * imageData.getStride());
unsigned char* outputLine = image.scanLine(i);
for (unsigned int j = 0; j < imageData.getWidth(); ++j)
{
// Number of masked-out colors
unsigned int maskedColors = 0;
for (unsigned int k = 0; k < componentCount; ++k)
{
PDFBitReader::Value value = reader.read();
// Interpolate value, if decode is not empty
if (!decode.empty())
{
color[k] = interpolate(value, 0.0, max, decode[2 * k], decode[2 * k + 1]);
}
else
{
color[k] = value * coefficient;
}
Q_ASSERT(2 * k + 1 < colorKeyMask.size());
if (static_cast<std::decay<decltype(colorKeyMask)>::type::value_type>(value) >= colorKeyMask[2 * k] &&
static_cast<std::decay<decltype(colorKeyMask)>::type::value_type>(value) <= colorKeyMask[2 * k + 1])
{
++maskedColors;
}
}
QColor transformedColor = getColor(color, cms, intent, reporter, true);
QRgb rgb = transformedColor.rgb();
*outputLine++ = qRed(rgb);
*outputLine++ = qGreen(rgb);
*outputLine++ = qBlue(rgb);
*outputLine++ = (maskedColors == componentCount) ? 0x00 : 0xFF;
}
}
return image;
}
default:
{
throw PDFRendererException(RenderErrorType::NotImplemented, PDFTranslationContext::tr("Image masking not implemented!"));
}
}
}
return QImage();
}
void PDFAbstractColorSpace::fillRGBBuffer(const std::vector<float>& colors,
unsigned char* outputBuffer,
RenderingIntent intent,
const PDFCMS* cms,
PDFRenderErrorReporter* reporter) const
{
// Generic solution
size_t colorComponentCount = getColorComponentCount();
size_t pixels = colors.size() / colorComponentCount;
auto it = colors.cbegin();
for (size_t i = 0; i < pixels; ++i)
{
PDFColor color;
color.resize(colorComponentCount);
for (size_t j = 0; j < colorComponentCount; ++j)
{
color[j] = *it++;
}
QColor transformedColor = getColor(color, cms, intent, reporter, true);
QRgb rgb = transformedColor.rgb();
*outputBuffer++ = qRed(rgb);
*outputBuffer++ = qGreen(rgb);
*outputBuffer++ = qBlue(rgb);
}
}
QColor PDFAbstractColorSpace::getCheckedColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
if (getColorComponentCount() != color.size())
{
throw PDFException(PDFTranslationContext::tr("Invalid number of color components. Expected number is %1, actual number is %2.").arg(static_cast<int>(getColorComponentCount())).arg(static_cast<int>(color.size())));
}
return getColor(color, cms, intent, reporter, true);
}
QImage PDFAbstractColorSpace::createAlphaMask(const PDFImageData& softMask)
{
if (softMask.getMaskingType() != PDFImageData::MaskingType::None)
{
throw PDFException(PDFTranslationContext::tr("Soft mask can't have masking."));
}
if (softMask.getWidth() < 1 || softMask.getHeight() < 1)
{
throw PDFException(PDFTranslationContext::tr("Invalid size of soft mask."));
}
QImage image(softMask.getWidth(), softMask.getHeight(), QImage::Format_Alpha8);
unsigned int componentCount = softMask.getComponents();
if (componentCount != 1)
{
throw PDFException(PDFTranslationContext::tr("Soft mask should have only 1 color component (alpha) instead of %1.").arg(componentCount));
}
const std::vector<PDFReal>& decode = softMask.getDecode();
if (!decode.empty() && decode.size() != componentCount * 2)
{
throw PDFException(PDFTranslationContext::tr("Invalid size of the decode array. Expected %1, actual %2.").arg(componentCount * 2).arg(decode.size()));
}
PDFBitReader reader(&softMask.getData(), softMask.getBitsPerComponent());
PDFColor color;
color.resize(componentCount);
const double max = reader.max();
const double coefficient = 1.0 / max;
for (unsigned int i = 0, rowCount = softMask.getHeight(); i < rowCount; ++i)
{
reader.seek(i * softMask.getStride());
unsigned char* outputLine = image.scanLine(i);
for (unsigned int j = 0; j < softMask.getWidth(); ++j)
{
PDFReal alpha = 0.0;
PDFReal value = reader.read();
// Interpolate value, if it is not empty
if (!decode.empty())
{
alpha = interpolate(value, 0.0, max, decode[0], decode[1]);
}
else
{
alpha = value * coefficient;
}
alpha = qBound(0.0, alpha, 1.0);
uint8_t alphaCoded = alpha * 255;
*outputLine++ = alphaCoded;
}
}
return image;
}
PDFColorSpacePointer PDFAbstractColorSpace::createColorSpace(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFObject& colorSpace)
{
std::set<QByteArray> usedNames;
return createColorSpaceImpl(colorSpaceDictionary, document, colorSpace, COLOR_SPACE_MAX_LEVEL_OF_RECURSION, usedNames);
}
PDFColorSpacePointer PDFAbstractColorSpace::createDeviceColorSpaceByName(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const QByteArray& name)
{
std::set<QByteArray> usedNames;
return createDeviceColorSpaceByNameImpl(colorSpaceDictionary, document, name, COLOR_SPACE_MAX_LEVEL_OF_RECURSION, usedNames);
}
PDFColor PDFAbstractColorSpace::convertToColor(const std::vector<PDFReal>& components)
{
PDFColor result;
for (PDFReal component : components)
{
result.push_back(component);
}
return result;
}
bool PDFAbstractColorSpace::isColorEqual(const PDFColor& color1, const PDFColor& color2, PDFReal tolerance)
{
const size_t size = color1.size();
if (size != color2.size())
{
return false;
}
for (size_t i = 0; i < size; ++i)
{
if (std::fabs(color1[i] - color2[i]) > tolerance)
{
return false;
}
}
return true;
}
PDFColor PDFAbstractColorSpace::mixColors(const PDFColor& color1, const PDFColor& color2, PDFReal ratio)
{
const size_t size = color1.size();
Q_ASSERT(size == color2.size());
PDFColor result;
result.resize(size);
for (size_t i = 0; i < size; ++i)
{
result[i] = color1[i] * (1.0 - ratio) + color2[i] * ratio;
}
return result;
}
bool PDFAbstractColorSpace::transform(const PDFAbstractColorSpace* source,
const PDFAbstractColorSpace* target,
const PDFCMS* cms,
RenderingIntent intent,
const PDFColorBuffer input,
PDFColorBuffer output,
PDFRenderErrorReporter* reporter)
{
Q_ASSERT(source);
Q_ASSERT(target);
Q_ASSERT(cms);
Q_ASSERT(target->isBlendColorSpace());
Q_ASSERT(input.size() % source->getColorComponentCount() == 0);
const std::size_t sourceColors = input.size() / source->getColorComponentCount();
const std::size_t targetColors = output.size() / target->getColorComponentCount();
if (sourceColors != targetColors)
{
// This is bad input values. Function should not be called with these parameters.
// Assert and return false. We do not want crash.
Q_ASSERT(false);
return false;
}
const std::size_t sourceColorsRemainder = input.size() % source->getColorComponentCount();
const std::size_t targetColorsRemainder = output.size() % target->getColorComponentCount();
if (sourceColorsRemainder > 0 || targetColorsRemainder > 0)
{
// Input/output buffer size is incorrect
Q_ASSERT(false);
return false;
}
if (source->equals(target))
{
// Just copy input buffer to output buffer
Q_ASSERT(input.size() == output.size());
std::copy(input.begin(), input.end(), output.begin());
return true;
}
// We will use following algorithm to transform colors:
// 1. Determine source color space type for cms,
// and adjust colors to this color space type
// 2. Prepare work output buffer of target size (can have
// different size than real output buffer)
// 3. Transform colors using CMS
// 4. Transform output color buffer to target color buffer
PDFCMS::ColorSpaceTransformParams params;
std::vector<PDFColorComponent> transformedInputColorsVector;
std::vector<PDFColorComponent> transformedOutputColorsVector;
PDFColorBuffer transformedInput = input;
PDFColorBuffer transformedOutput = output;
params.intent = intent;
switch (source->getColorSpace())
{
case ColorSpace::DeviceGray:
params.sourceType = PDFCMS::ColorSpaceType::DeviceGray;
break;
case ColorSpace::DeviceRGB:
params.sourceType = PDFCMS::ColorSpaceType::DeviceRGB;
break;
case ColorSpace::DeviceCMYK:
params.sourceType = PDFCMS::ColorSpaceType::DeviceCMYK;
break;
case ColorSpace::CalGray:
{
params.sourceType = PDFCMS::ColorSpaceType::XYZ;
// Transform gray to XYZ
const PDFCalGrayColorSpace* calGrayColorSpace = static_cast<const PDFCalGrayColorSpace*>(source);
const PDFColorComponent gamma = calGrayColorSpace->getGamma();
transformedInputColorsVector.resize(input.size() * 3, 0.0f);
auto it = transformedInputColorsVector.begin();
for (PDFColorComponent gray : input)
{
const PDFColorComponent A = clip01(gray);
const PDFColorComponent xyzColor = std::powf(A, gamma);
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = xyzColor;
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = xyzColor;
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = xyzColor;
}
Q_ASSERT(it == transformedInputColorsVector.end());
transformedInput = PDFColorBuffer(transformedInputColorsVector.data(), transformedInputColorsVector.size());
break;
}
case ColorSpace::CalRGB:
{
params.sourceType = PDFCMS::ColorSpaceType::XYZ;
const PDFCalRGBColorSpace* calRGBColorSpace = static_cast<const PDFCalRGBColorSpace*>(source);
const PDFColor3 gamma = calRGBColorSpace->getGamma();
const PDFColorComponentMatrix_3x3 matrix = calRGBColorSpace->getMatrix();
transformedInputColorsVector.resize(input.size(), 0.0f);
auto it = transformedInputColorsVector.begin();
for (auto sourceIt = input.cbegin(); sourceIt != input.cend(); sourceIt = std::next(sourceIt, 3))
{
PDFColor3 ABC = { };
Q_ASSERT(sourceIt != input.end());
ABC[0] = *sourceIt;
Q_ASSERT(sourceIt + 1 != input.end());
ABC[1] = *std::next(sourceIt, 1);
Q_ASSERT(sourceIt + 2 != input.end());
ABC[2] = *std::next(sourceIt, 2);
ABC = colorPowerByFactors(ABC, gamma);
const PDFColor3 XYZ = matrix * ABC;
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = XYZ[0];
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = XYZ[1];
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = XYZ[2];
}
Q_ASSERT(it == transformedInputColorsVector.end());
transformedInput = PDFColorBuffer(transformedInputColorsVector.data(), transformedInputColorsVector.size());
break;
}
case ColorSpace::Lab:
{
params.sourceType = PDFCMS::ColorSpaceType::XYZ;
const PDFLabColorSpace* labColorSpace = static_cast<const PDFLabColorSpace*>(source);
const PDFColorComponent aMin = labColorSpace->getAMin();
const PDFColorComponent aMax = labColorSpace->getAMax();
const PDFColorComponent bMin = labColorSpace->getBMin();
const PDFColorComponent bMax = labColorSpace->getBMax();
transformedInputColorsVector.resize(input.size(), 0.0f);
auto it = transformedInputColorsVector.begin();
for (auto sourceIt = input.cbegin(); sourceIt != input.cend(); sourceIt = std::next(sourceIt, 3))
{
Q_ASSERT(sourceIt != input.end());
Q_ASSERT(sourceIt + 1 != input.end());
Q_ASSERT(sourceIt + 2 != input.end());
PDFColorComponent LStar = qBound<PDFColorComponent>(0.0, interpolate(*sourceIt, 0.0, 1.0, 0.0, 100.0), 100.0);
PDFColorComponent aStar = qBound<PDFColorComponent>(aMin, interpolate(*std::next(sourceIt, 1), 0.0, 1.0, aMin, aMax), aMax);
PDFColorComponent bStar = qBound<PDFColorComponent>(bMin, interpolate(*std::next(sourceIt, 2), 0.0, 1.0, bMin, bMax), bMax);
const PDFColorComponent param1 = (LStar + 16.0f) / 116.0f;
const PDFColorComponent param2 = aStar / 500.0f;
const PDFColorComponent param3 = bStar / 200.0f;
const PDFColorComponent L = param1 + param2;
const PDFColorComponent M = param1;
const PDFColorComponent N = param1 - param3;
auto g = [](PDFColorComponent x) -> PDFColorComponent
{
if (x >= 6.0f / 29.0f)
{
return x * x * x;
}
else
{
return (108.0f / 841.0f) * (x - 4.0f / 29.0f);
}
};
const PDFColorComponent gL = g(L);
const PDFColorComponent gM = g(M);
const PDFColorComponent gN = g(N);
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = gL;
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = gM;
Q_ASSERT(it != transformedInputColorsVector.end());
*it++ = gN;
}
Q_ASSERT(it == transformedInputColorsVector.end());
transformedInput = PDFColorBuffer(transformedInputColorsVector.data(), transformedInputColorsVector.size());
break;
}
case ColorSpace::ICCBased:
{
const PDFICCBasedColorSpace* iccBasedColorSpace = static_cast<const PDFICCBasedColorSpace*>(source);
params.sourceType = PDFCMS::ColorSpaceType::ICC;
params.sourceIccId = iccBasedColorSpace->getIccProfileDataChecksum();
params.sourceIccData = iccBasedColorSpace->getIccProfileData();
size_t colorComponentCount = iccBasedColorSpace->getColorComponentCount();
const PDFICCBasedColorSpace::Ranges& ranges = iccBasedColorSpace->getRange();
transformedInputColorsVector.resize(input.size(), 0.0f);
auto outputIt = transformedInputColorsVector.begin();
for (auto inputIt = input.cbegin(); inputIt != input.cend();)
{
for (size_t i = 0; i < colorComponentCount; ++i)
{
const size_t imin = 2 * i + 0;
const size_t imax = 2 * i + 1;
*outputIt++ = qBound(ranges[imin], *inputIt++, ranges[imax]);
}
}
transformedInput = PDFColorBuffer(transformedInputColorsVector.data(), transformedInputColorsVector.size());
break;
}
case ColorSpace::Indexed:
{
const PDFIndexedColorSpace* indexedColorSpace = static_cast<const PDFIndexedColorSpace*>(source);
PDFColorSpacePointer baseColorSpace = indexedColorSpace->getBaseColorSpace();
std::vector<PDFColorComponent> transformedToBaseColorSpaceInput = indexedColorSpace->transformColorsToBaseColorSpace(input);
PDFColorBuffer transformedInputBuffer(transformedToBaseColorSpaceInput.data(), transformedToBaseColorSpaceInput.size());
return transform(baseColorSpace.data(), target, cms, intent, transformedInputBuffer, output, reporter);
}
case ColorSpace::Separation:
{
const PDFSeparationColorSpace* separationColorSpace = static_cast<const PDFSeparationColorSpace*>(source);
PDFColorSpacePointer alternateColorSpace = separationColorSpace->getAlternateColorSpace();
std::vector<PDFColorComponent> transformedToBaseColorSpaceInput = separationColorSpace->transformColorsToBaseColorSpace(input);
PDFColorBuffer transformedInputBuffer(transformedToBaseColorSpaceInput.data(), transformedToBaseColorSpaceInput.size());
return transform(alternateColorSpace.data(), target, cms, intent, transformedInputBuffer, output, reporter);
}
case ColorSpace::DeviceN:
{
const PDFDeviceNColorSpace* separationColorSpace = static_cast<const PDFDeviceNColorSpace*>(source);
PDFColorSpacePointer alternateColorSpace = separationColorSpace->getAlternateColorSpace();
std::vector<PDFColorComponent> transformedToBaseColorSpaceInput = separationColorSpace->transformColorsToBaseColorSpace(input);
PDFColorBuffer transformedInputBuffer(transformedToBaseColorSpaceInput.data(), transformedToBaseColorSpaceInput.size());
return transform(alternateColorSpace.data(), target, cms, intent, transformedInputBuffer, output, reporter);
}
case ColorSpace::Pattern:
return false;
default:
Q_ASSERT(false);
return false;
}
switch (target->getColorSpace())
{
case ColorSpace::DeviceGray:
// Output buffer size is the same as target type
params.targetType = PDFCMS::ColorSpaceType::DeviceGray;
break;
case ColorSpace::DeviceRGB:
// Output buffer size is the same as target type
params.targetType = PDFCMS::ColorSpaceType::DeviceRGB;
break;
case ColorSpace::DeviceCMYK:
// Output buffer size is the same as target type
params.targetType = PDFCMS::ColorSpaceType::DeviceCMYK;
break;
case pdf::PDFAbstractColorSpace::ColorSpace::CalGray:
{
params.targetType = PDFCMS::ColorSpaceType::XYZ;
transformedOutputColorsVector.resize(output.size() * 3, 0.0f);
transformedOutput = PDFColorBuffer(transformedOutputColorsVector.data(), transformedOutputColorsVector.size());
break;
}
case pdf::PDFAbstractColorSpace::ColorSpace::CalRGB:
{
// Output buffer size is the same as target type
params.targetType = PDFCMS::ColorSpaceType::XYZ;
transformedOutputColorsVector.resize(output.size(), 0.0f);
transformedOutput = PDFColorBuffer(transformedOutputColorsVector.data(), transformedOutputColorsVector.size());
break;
}
case pdf::PDFAbstractColorSpace::ColorSpace::ICCBased:
{
const PDFICCBasedColorSpace* iccBasedColorSpace = static_cast<const PDFICCBasedColorSpace*>(target);
params.targetType = PDFCMS::ColorSpaceType::ICC;
params.targetIccId = iccBasedColorSpace->getIccProfileDataChecksum();
params.targetIccData = iccBasedColorSpace->getIccProfileData();
break;
}
default:
Q_ASSERT(false);
return false;
}
params.input = transformedInput;
params.output = transformedOutput;
cms->transformColorSpace(params);
switch (target->getColorSpace())
{
case pdf::PDFAbstractColorSpace::ColorSpace::CalGray:
{
const PDFCalGrayColorSpace* calGrayColorSpace = static_cast<const PDFCalGrayColorSpace*>(source);
const PDFColorComponent gamma = 1.0 / calGrayColorSpace->getGamma();
auto outputIt = output.begin();
for (auto transformedOutputIt = transformedOutput.cbegin(); transformedOutputIt != transformedOutput.cend(); transformedOutputIt = std::next(transformedOutputIt, 3))
{
PDFColor3 XYZ = { };
Q_ASSERT(transformedOutputIt != transformedOutput.end());
XYZ[0] = *transformedOutputIt;
Q_ASSERT(transformedOutputIt + 1 != transformedOutput.end());
XYZ[1] = *std::next(transformedOutputIt, 1);
Q_ASSERT(transformedOutputIt + 2 != transformedOutput.end());
XYZ[2] = *std::next(transformedOutputIt, 2);
const PDFColorComponent gray = (XYZ[0] + XYZ[1] + XYZ[2]) * 0.333333333333333;
const PDFColorComponent grayWithGamma = std::powf(gray, gamma);
Q_ASSERT(outputIt != output.cend());
*outputIt++ = grayWithGamma;
}
Q_ASSERT(outputIt == output.cend());
break;
}
case pdf::PDFAbstractColorSpace::ColorSpace::CalRGB:
{
const PDFCalRGBColorSpace* calRGBColorSpace = static_cast<const PDFCalRGBColorSpace*>(source);
const PDFColor3 gammaForward = calRGBColorSpace->getGamma();
const PDFColorComponentMatrix_3x3 matrixForward = calRGBColorSpace->getMatrix();
const PDFColor3 gammaInverse = PDFColor3{ 1.0f / gammaForward[0], 1.0f / gammaForward[1], 1.0f / gammaForward[2] };
const PDFColorComponentMatrix_3x3 matrixInverse = getInverseMatrix(matrixForward);
auto outputIt = output.begin();
for (auto transformedOutputIt = transformedOutput.cbegin(); transformedOutputIt != transformedOutput.cend(); transformedOutputIt = std::next(transformedOutputIt, 3))
{
PDFColor3 XYZ = { };
XYZ[0] = *transformedOutputIt;
XYZ[1] = *std::next(transformedOutputIt, 1);
XYZ[2] = *std::next(transformedOutputIt, 2);
const PDFColor3 RGB = matrixInverse * XYZ;
const PDFColor3 RGBwithGamma = colorPowerByFactors(RGB, gammaInverse);
Q_ASSERT(outputIt != output.end());
*outputIt++ = RGBwithGamma[0];
Q_ASSERT(outputIt != output.end());
*outputIt++ = RGBwithGamma[1];
Q_ASSERT(outputIt != output.end());
*outputIt++ = RGBwithGamma[2];
}
Q_ASSERT(outputIt == output.cend());
break;
}
default:
break;
}
return true;
}
PDFColorSpacePointer PDFAbstractColorSpace::createColorSpaceImpl(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFObject& colorSpace,
int recursion,
std::set<QByteArray>& usedNames)
{
if (--recursion <= 0)
{
throw PDFException(PDFTranslationContext::tr("Can't load color space, because color space structure is too complex."));
}
if (colorSpace.isName())
{
return createDeviceColorSpaceByNameImpl(colorSpaceDictionary, document, colorSpace.getString(), recursion, usedNames);
}
else if (colorSpace.isArray())
{
// First value of the array should be identification name, second value dictionary with parameters
const PDFArray* array = colorSpace.getArray();
size_t count = array->getCount();
if (count > 0)
{
// Name of the color space
const PDFObject& colorSpaceIdentifier = document->getObject(array->getItem(0));
if (colorSpaceIdentifier.isName())
{
QByteArray name = colorSpaceIdentifier.getString();
const PDFDictionary* dictionary = nullptr;
const PDFStream* stream = nullptr;
if (count > 1)
{
const PDFObject& colorSpaceSettings = document->getObject(array->getItem(1));
if (colorSpaceSettings.isDictionary())
{
dictionary = colorSpaceSettings.getDictionary();
}
if (colorSpaceSettings.isStream())
{
stream = colorSpaceSettings.getStream();
}
}
if (name == COLOR_SPACE_NAME_PATTERN)
{
PDFColorSpacePointer uncoloredPatternColorSpace;
if (count == 2)
{
uncoloredPatternColorSpace = createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(array->getItem(1)), recursion, usedNames);
}
return PDFColorSpacePointer(new PDFPatternColorSpace(std::make_shared<PDFInvalidPattern>(), qMove(uncoloredPatternColorSpace), PDFColor()));
}
if (dictionary)
{
if (name == COLOR_SPACE_NAME_CAL_GRAY)
{
return PDFCalGrayColorSpace::createCalGrayColorSpace(document, dictionary);
}
else if (name == COLOR_SPACE_NAME_CAL_RGB)
{
return PDFCalRGBColorSpace::createCalRGBColorSpace(document, dictionary);
}
else if (name == COLOR_SPACE_NAME_LAB)
{
return PDFLabColorSpace::createLabColorSpace(document, dictionary);
}
}
if (stream && name == COLOR_SPACE_NAME_ICCBASED)
{
return PDFICCBasedColorSpace::createICCBasedColorSpace(colorSpaceDictionary, document, stream, recursion, usedNames);
}
if (name == COLOR_SPACE_NAME_INDEXED && count == 4)
{
return PDFIndexedColorSpace::createIndexedColorSpace(colorSpaceDictionary, document, array, recursion, usedNames);
}
if (name == COLOR_SPACE_NAME_SEPARATION && count == 4)
{
return PDFSeparationColorSpace::createSeparationColorSpace(colorSpaceDictionary, document, array, recursion, usedNames);
}
if (name == COLOR_SPACE_NAME_DEVICE_N && count >= 4)
{
return PDFDeviceNColorSpace::createDeviceNColorSpace(colorSpaceDictionary, document, array, recursion, usedNames);
}
// Try to just load by standard way - we can have "standard" color space stored in array
return createColorSpaceImpl(colorSpaceDictionary, document, colorSpaceIdentifier, recursion, usedNames);
}
}
}
throw PDFException(PDFTranslationContext::tr("Invalid color space."));
return PDFColorSpacePointer();
}
PDFColorSpacePointer PDFAbstractColorSpace::createDeviceColorSpaceByNameImpl(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const QByteArray& name,
int recursion,
std::set<QByteArray>& usedNames)
{
if (--recursion <= 0)
{
throw PDFException(PDFTranslationContext::tr("Can't load color space, because color space structure is too complex."));
}
// Jakub Melka: This flag is set when we are already parsing the name. This can occur
// for example by this way: we have DefaultRGB, which is ICC profile. In this ICC profile,
// we create alternate alternate RGB color space also from DefaultRGB name. But in this time,
// we must use generic RGB color space, not DefaultRGB from color space dictionary, because
// it will be cyclical dependency.
bool isNameAlreadyProcessed = usedNames.count(name);
usedNames.insert(name);
if (name == COLOR_SPACE_NAME_PATTERN)
{
return PDFColorSpacePointer(new PDFPatternColorSpace(std::make_shared<PDFInvalidPattern>(), nullptr, PDFColor()));
}
if (name == COLOR_SPACE_NAME_DEVICE_GRAY || name == COLOR_SPACE_NAME_ABBREVIATION_DEVICE_GRAY)
{
if (colorSpaceDictionary && colorSpaceDictionary->hasKey(COLOR_SPACE_NAME_DEFAULT_GRAY) && !isNameAlreadyProcessed)
{
return createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(colorSpaceDictionary->get(COLOR_SPACE_NAME_DEFAULT_GRAY)), recursion, usedNames);
}
else
{
return PDFColorSpacePointer(new PDFDeviceGrayColorSpace());
}
}
else if (name == COLOR_SPACE_NAME_DEVICE_RGB || name == COLOR_SPACE_NAME_ABBREVIATION_DEVICE_RGB)
{
if (colorSpaceDictionary && colorSpaceDictionary->hasKey(COLOR_SPACE_NAME_DEFAULT_RGB) && !isNameAlreadyProcessed)
{
return createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(colorSpaceDictionary->get(COLOR_SPACE_NAME_DEFAULT_RGB)), recursion, usedNames);
}
else
{
return PDFColorSpacePointer(new PDFDeviceRGBColorSpace());
}
}
else if (name == COLOR_SPACE_NAME_DEVICE_CMYK || name == COLOR_SPACE_NAME_ABBREVIATION_DEVICE_CMYK || name == COLOR_SPACE_NAME_ABBREVIATION_CAL_CMYK)
{
if (colorSpaceDictionary && colorSpaceDictionary->hasKey(COLOR_SPACE_NAME_DEFAULT_CMYK) && !isNameAlreadyProcessed)
{
return createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(colorSpaceDictionary->get(COLOR_SPACE_NAME_DEFAULT_CMYK)), recursion, usedNames);
}
else
{
return PDFColorSpacePointer(new PDFDeviceCMYKColorSpace());
}
}
else if (colorSpaceDictionary && colorSpaceDictionary->hasKey(name))
{
return createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(colorSpaceDictionary->get(name)), recursion, usedNames);
}
throw PDFException(PDFTranslationContext::tr("Invalid color space."));
return PDFColorSpacePointer();
}
/// Conversion matrix from XYZ space to RGB space. Values are taken from this article:
/// https://en.wikipedia.org/wiki/SRGB#The_sRGB_transfer_function_.28.22gamma.22.29
static constexpr const PDFColorComponentMatrix<3, 3> matrixXYZtoRGB(
3.2406f, -1.5372f, -0.4986f,
-0.9689f, 1.8758f, 0.0415f,
0.0557f, -0.2040f, 1.0570f
);
PDFColor3 PDFAbstractColorSpace::convertXYZtoRGB(const PDFColor3& xyzColor)
{
return matrixXYZtoRGB * xyzColor;
}
PDFColor PDFXYZColorSpace::getDefaultColorOriginal() const
{
PDFColor color;
const size_t componentCount = getColorComponentCount();
for (size_t i = 0; i < componentCount; ++i)
{
color.push_back(0.0f);
}
return color;
}
bool PDFXYZColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFAbstractColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFXYZColorSpace*>(other));
const PDFXYZColorSpace* typedOther = static_cast<const PDFXYZColorSpace*>(other);
return m_whitePoint == typedOther->getWhitePoint() && m_correctionCoefficients == typedOther->getCorrectionCoefficients();
}
PDFXYZColorSpace::PDFXYZColorSpace(PDFColor3 whitePoint) :
m_whitePoint(whitePoint),
m_correctionCoefficients()
{
PDFColor3 mappedWhitePoint = convertXYZtoRGB(m_whitePoint);
m_correctionCoefficients[0] = 1.0f / mappedWhitePoint[0];
m_correctionCoefficients[1] = 1.0f / mappedWhitePoint[1];
m_correctionCoefficients[2] = 1.0f / mappedWhitePoint[2];
}
const PDFColor3& PDFXYZColorSpace::getCorrectionCoefficients() const
{
return m_correctionCoefficients;
}
PDFCalGrayColorSpace::PDFCalGrayColorSpace(PDFColor3 whitePoint, PDFColor3 blackPoint, PDFColorComponent gamma) :
PDFXYZColorSpace(whitePoint),
m_blackPoint(blackPoint),
m_gamma(gamma)
{
}
bool PDFCalGrayColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFXYZColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFCalGrayColorSpace*>(other));
const PDFCalGrayColorSpace* typedOther = static_cast<const PDFCalGrayColorSpace*>(other);
return m_blackPoint == typedOther->getBlackPoint() && m_gamma == typedOther->getGamma();
}
QColor PDFCalGrayColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
const PDFColorComponent A = clip01(color[0]);
const PDFColorComponent xyzColor = std::powf(A, m_gamma);
PDFColor3 xyzColorCMS = { xyzColor, xyzColor, xyzColor };
QColor cmsColor = cms->getColorFromXYZ(m_whitePoint, xyzColorCMS, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
const PDFColor3 xyzColorMultipliedByWhitePoint = colorMultiplyByFactor(m_whitePoint, xyzColor);
const PDFColor3 rgb = convertXYZtoRGB(xyzColorMultipliedByWhitePoint);
const PDFColor3 calibratedRGB = colorMultiplyByFactors(rgb, m_correctionCoefficients);
return fromRGB01(calibratedRGB);
}
size_t PDFCalGrayColorSpace::getColorComponentCount() const
{
return 1;
}
void PDFCalGrayColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
std::vector<float> xyzColors(colors.size() * 3, 0.0f);
auto it = xyzColors.begin();
for (float gray : colors)
{
const PDFColorComponent xyzColor = std::powf(clip01(gray), m_gamma);
*it++ = xyzColor;
*it++ = xyzColor;
*it++ = xyzColor;
}
Q_ASSERT(xyzColors.size() == colors.size() * 3);
if (!cms->fillRGBBufferFromXYZ(m_whitePoint, xyzColors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
PDFColorSpacePointer PDFCalGrayColorSpace::createCalGrayColorSpace(const PDFDocument* document, const PDFDictionary* dictionary)
{
// Standard D65 white point
PDFColor3 whitePoint = { 0.9505f, 1.0000f, 1.0890f };
PDFColor3 blackPoint = { 0, 0, 0 };
PDFColorComponent gamma = 1.0f;
PDFDocumentDataLoaderDecorator loader(document);
loader.readNumberArrayFromDictionary(dictionary, CAL_WHITE_POINT, whitePoint.begin(), whitePoint.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_BLACK_POINT, blackPoint.begin(), blackPoint.end());
gamma = loader.readNumberFromDictionary(dictionary, CAL_GAMMA, gamma);
return PDFColorSpacePointer(new PDFCalGrayColorSpace(whitePoint, blackPoint, gamma));
}
PDFCalRGBColorSpace::PDFCalRGBColorSpace(PDFColor3 whitePoint, PDFColor3 blackPoint, PDFColor3 gamma, PDFColorComponentMatrix_3x3 matrix) :
PDFXYZColorSpace(whitePoint),
m_blackPoint(blackPoint),
m_gamma(gamma),
m_matrix(matrix)
{
}
bool PDFCalRGBColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFXYZColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFCalRGBColorSpace*>(other));
const PDFCalRGBColorSpace* typedOther = static_cast<const PDFCalRGBColorSpace*>(other);
return m_blackPoint == typedOther->getBlackPoint() && m_gamma == typedOther->getGamma() && m_matrix == typedOther->getMatrix();
}
QColor PDFCalRGBColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
const PDFColor3 ABC = clip01(PDFColor3{ color[0], color[1], color[2] });
const PDFColor3 ABCwithGamma = colorPowerByFactors(ABC, m_gamma);
const PDFColor3 XYZ = m_matrix * ABCwithGamma;
QColor cmsColor = cms->getColorFromXYZ(m_whitePoint, XYZ, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
const PDFColor3 rgb = convertXYZtoRGB(XYZ);
const PDFColor3 calibratedRGB = colorMultiplyByFactors(rgb, m_correctionCoefficients);
return fromRGB01(calibratedRGB);
}
size_t PDFCalRGBColorSpace::getColorComponentCount() const
{
return 3;
}
void PDFCalRGBColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
std::vector<float> xyzColors(colors.size(), 0.0f);
auto it = xyzColors.begin();
for (size_t i = 0; i < colors.size(); i += 3)
{
Q_ASSERT(i + 2 < colors.size());
const PDFColor3 ABC = clip01(PDFColor3{ colors[i + 0], colors[i + 1], colors[i + 2] });
const PDFColor3 ABCwithGamma = colorPowerByFactors(ABC, m_gamma);
const PDFColor3 XYZ = m_matrix * ABCwithGamma;
*it++ = XYZ[0];
*it++ = XYZ[1];
*it++ = XYZ[2];
}
Q_ASSERT(xyzColors.size() == colors.size());
if (!cms->fillRGBBufferFromXYZ(m_whitePoint, xyzColors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
PDFColorSpacePointer PDFCalRGBColorSpace::createCalRGBColorSpace(const PDFDocument* document, const PDFDictionary* dictionary)
{
// Standard D65 white point
PDFColor3 whitePoint = { 0.9505f, 1.0000f, 1.0890f };
PDFColor3 blackPoint = { 0, 0, 0 };
PDFColor3 gamma = { 1.0f, 1.0f, 1.0f };
PDFColorComponentMatrix_3x3 matrix( 1, 0, 0,
0, 1, 0,
0, 0, 1 );
PDFDocumentDataLoaderDecorator loader(document);
loader.readNumberArrayFromDictionary(dictionary, CAL_WHITE_POINT, whitePoint.begin(), whitePoint.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_BLACK_POINT, blackPoint.begin(), blackPoint.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_GAMMA, gamma.begin(), gamma.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_MATRIX, matrix.begin(), matrix.end());
matrix.transpose();
return PDFColorSpacePointer(new PDFCalRGBColorSpace(whitePoint, blackPoint, gamma, matrix));
}
PDFColor3 PDFCalRGBColorSpace::getBlackPoint() const
{
return m_blackPoint;
}
PDFColor3 PDFCalRGBColorSpace::getGamma() const
{
return m_gamma;
}
const PDFColorComponentMatrix_3x3& PDFCalRGBColorSpace::getMatrix() const
{
return m_matrix;
}
PDFLabColorSpace::PDFLabColorSpace(PDFColor3 whitePoint,
PDFColor3 blackPoint,
PDFColorComponent aMin,
PDFColorComponent aMax,
PDFColorComponent bMin,
PDFColorComponent bMax) :
PDFXYZColorSpace(whitePoint),
m_blackPoint(blackPoint),
m_aMin(aMin),
m_aMax(aMax),
m_bMin(bMin),
m_bMax(bMax)
{
}
bool PDFLabColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFXYZColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFLabColorSpace*>(other));
const PDFLabColorSpace* typedOther = static_cast<const PDFLabColorSpace*>(other);
return m_blackPoint == typedOther->getBlackPoint() &&
m_aMin == typedOther->getAMin() && m_aMax == typedOther->getAMax() &&
m_bMin == typedOther->getBMin() && m_bMax == typedOther->getBMax();
}
QColor PDFLabColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
PDFColorComponent LStar = 0;
PDFColorComponent aStar = 0;
PDFColorComponent bStar = 0;
if (isRange01)
{
LStar = qBound(0.0, interpolate(color[0], 0.0, 1.0, 0.0, 100.0), 100.0);
aStar = qBound<PDFColorComponent>(m_aMin, interpolate(color[1], 0.0, 1.0, m_aMin, m_aMax), m_aMax);
bStar = qBound<PDFColorComponent>(m_bMin, interpolate(color[2], 0.0, 1.0, m_bMin, m_bMax), m_bMax);
}
else
{
LStar = qBound<PDFColorComponent>(0.0, color[0], 100.0);
aStar = qBound<PDFColorComponent>(m_aMin, color[1], m_aMax);
bStar = qBound<PDFColorComponent>(m_bMin, color[2], m_bMax);
}
const PDFColorComponent param1 = (LStar + 16.0f) / 116.0f;
const PDFColorComponent param2 = aStar / 500.0f;
const PDFColorComponent param3 = bStar / 200.0f;
const PDFColorComponent L = param1 + param2;
const PDFColorComponent M = param1;
const PDFColorComponent N = param1 - param3;
auto g = [](PDFColorComponent x) -> PDFColorComponent
{
if (x >= 6.0f / 29.0f)
{
return x * x * x;
}
else
{
return (108.0f / 841.0f) * (x - 4.0f / 29.0f);
}
};
const PDFColorComponent gL = g(L);
const PDFColorComponent gM = g(M);
const PDFColorComponent gN = g(N);
const PDFColor3 gLMN = { gL, gM, gN };
QColor cmsColor = cms->getColorFromXYZ(m_whitePoint, gLMN, intent, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
const PDFColor3 XYZ = colorMultiplyByFactors(m_whitePoint, gLMN);
const PDFColor3 rgb = convertXYZtoRGB(XYZ);
const PDFColor3 calibratedRGB = colorMultiplyByFactors(rgb, m_correctionCoefficients);
return fromRGB01(calibratedRGB);
}
size_t PDFLabColorSpace::getColorComponentCount() const
{
return 3;
}
void PDFLabColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
auto g = [](PDFColorComponent x) -> PDFColorComponent
{
if (x >= 6.0f / 29.0f)
{
return x * x * x;
}
else
{
return (108.0f / 841.0f) * (x - 4.0f / 29.0f);
}
};
std::vector<float> xyzColors(colors.size(), 0.0f);
auto it = xyzColors.begin();
for (size_t i = 0; i < colors.size(); i += 3)
{
Q_ASSERT(i + 2 < colors.size());
const PDFColorComponent LStar = qBound(0.0, interpolate(colors[i + 0], 0.0, 1.0, 0.0, 100.0), 100.0);
const PDFColorComponent aStar = qBound<PDFColorComponent>(m_aMin, interpolate(colors[i + 1], 0.0, 1.0, m_aMin, m_aMax), m_aMax);
const PDFColorComponent bStar = qBound<PDFColorComponent>(m_bMin, interpolate(colors[i + 2], 0.0, 1.0, m_bMin, m_bMax), m_bMax);
const PDFColorComponent param1 = (LStar + 16.0f) / 116.0f;
const PDFColorComponent param2 = aStar / 500.0f;
const PDFColorComponent param3 = bStar / 200.0f;
const PDFColorComponent L = param1 + param2;
const PDFColorComponent M = param1;
const PDFColorComponent N = param1 - param3;
*it++ = g(L);
*it++ = g(M);
*it++ = g(N);
}
Q_ASSERT(xyzColors.size() == colors.size());
if (!cms->fillRGBBufferFromXYZ(m_whitePoint, xyzColors, intent, outputBuffer, reporter))
{
PDFAbstractColorSpace::fillRGBBuffer(colors, outputBuffer, intent, cms, reporter);
}
}
PDFColorSpacePointer PDFLabColorSpace::createLabColorSpace(const PDFDocument* document, const PDFDictionary* dictionary)
{
// Standard D65 white point
PDFColor3 whitePoint = { 0.9505f, 1.0000f, 1.0890f };
PDFColor3 blackPoint = { 0, 0, 0 };
static_assert(std::numeric_limits<PDFColorComponent>::has_infinity, "Fix this code!");
const PDFColorComponent infPos = std::numeric_limits<PDFColorComponent>::infinity();
const PDFColorComponent infNeg = -std::numeric_limits<PDFColorComponent>::infinity();
std::array<PDFColorComponent, 4> minMax = { infNeg, infPos, infNeg, infPos };
PDFDocumentDataLoaderDecorator loader(document);
loader.readNumberArrayFromDictionary(dictionary, CAL_WHITE_POINT, whitePoint.begin(), whitePoint.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_BLACK_POINT, blackPoint.begin(), blackPoint.end());
loader.readNumberArrayFromDictionary(dictionary, CAL_RANGE, minMax.begin(), minMax.end());
return PDFColorSpacePointer(new PDFLabColorSpace(whitePoint, blackPoint, minMax[0], minMax[1], minMax[2], minMax[3]));
}
PDFColorComponent PDFLabColorSpace::getAMin() const
{
return m_aMin;
}
PDFColorComponent PDFLabColorSpace::getAMax() const
{
return m_aMax;
}
PDFColorComponent PDFLabColorSpace::getBMin() const
{
return m_bMin;
}
PDFColorComponent PDFLabColorSpace::getBMax() const
{
return m_bMax;
}
PDFColor3 PDFLabColorSpace::getBlackPoint() const
{
return m_blackPoint;
}
PDFICCBasedColorSpace::PDFICCBasedColorSpace(PDFColorSpacePointer alternateColorSpace, Ranges range, QByteArray iccProfileData, PDFObjectReference metadata) :
m_alternateColorSpace(qMove(alternateColorSpace)),
m_range(range),
m_iccProfileData(qMove(iccProfileData)),
m_metadata(metadata)
{
// Compute checksum
m_iccProfileDataChecksum = QCryptographicHash::hash(m_iccProfileData, QCryptographicHash::Md5);
}
PDFColor PDFICCBasedColorSpace::getDefaultColorOriginal() const
{
PDFColor color;
const size_t componentCount = getColorComponentCount();
for (size_t i = 0; i < componentCount; ++i)
{
color.push_back(0.0f);
}
return color;
}
QColor PDFICCBasedColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_ASSERT(color.size() == getColorComponentCount());
Q_UNUSED(isRange01);
size_t colorComponentCount = getColorComponentCount();
// Clip color values by range
PDFColor clippedColor = color;
for (size_t i = 0; i < colorComponentCount; ++i)
{
const size_t imin = 2 * i + 0;
const size_t imax = 2 * i + 1;
clippedColor[i] = qBound(m_range[imin], clippedColor[i], m_range[imax]);
}
QColor cmsColor = cms->getColorFromICC(clippedColor, intent, m_iccProfileDataChecksum, m_iccProfileData, reporter);
if (cmsColor.isValid())
{
return cmsColor;
}
return m_alternateColorSpace->getColor(clippedColor, cms, intent, reporter, true);
}
size_t PDFICCBasedColorSpace::getColorComponentCount() const
{
return m_alternateColorSpace->getColorComponentCount();
}
void PDFICCBasedColorSpace::fillRGBBuffer(const std::vector<float>& colors, unsigned char* outputBuffer, RenderingIntent intent, const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
size_t colorComponentCount = getColorComponentCount();
std::vector<float> clippedColors(colors.size(), 0.0f);
for (size_t i = 0, colorCount = colors.size(); i < colorCount; ++i)
{
const size_t componentIndex = i % colorComponentCount;
const size_t imin = 2 * componentIndex + 0;
const size_t imax = 2 * componentIndex + 1;
clippedColors[i] = qBound(m_range[imin], colors[i], m_range[imax]);
}
if (!cms->fillRGBBufferFromICC(clippedColors, intent, outputBuffer, m_iccProfileDataChecksum, m_iccProfileData, reporter))
{
// Try to fill buffer from alternate color space
m_alternateColorSpace->fillRGBBuffer(clippedColors, outputBuffer, intent, cms, reporter);
}
}
bool PDFICCBasedColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFAbstractColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFICCBasedColorSpace*>(other));
const PDFICCBasedColorSpace* typedOther = static_cast<const PDFICCBasedColorSpace*>(other);
const PDFAbstractColorSpace* alternateColorSpace = typedOther->getAlternateColorSpace();
if (static_cast<bool>(m_alternateColorSpace.data()) != static_cast<bool>(alternateColorSpace))
{
return false;
}
if (m_alternateColorSpace && alternateColorSpace && !m_alternateColorSpace->equals(alternateColorSpace))
{
return false;
}
return m_range == typedOther->getRange() && m_iccProfileDataChecksum == typedOther->getIccProfileDataChecksum();
}
PDFColorSpacePointer PDFICCBasedColorSpace::createICCBasedColorSpace(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFStream* stream,
int recursion,
std::set<QByteArray>& usedNames)
{
// First, try to load alternate color space, if it is present
const PDFDictionary* dictionary = stream->getDictionary();
QByteArray iccProfileData = document->getDecodedStream(stream);
PDFDocumentDataLoaderDecorator loader(document);
PDFColorSpacePointer alternateColorSpace;
if (dictionary->hasKey(ICCBASED_ALTERNATE))
{
alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(dictionary->get(ICCBASED_ALTERNATE)), recursion, usedNames);
}
else
{
// Determine color space from parameter N, which determines number of components
const PDFInteger N = loader.readIntegerFromDictionary(dictionary, ICCBASED_N, 0);
switch (N)
{
case 1:
{
alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, PDFObject::createName(COLOR_SPACE_NAME_DEVICE_GRAY), recursion, usedNames);
break;
}
case 3:
{
alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, PDFObject::createName(COLOR_SPACE_NAME_DEVICE_RGB), recursion, usedNames);
break;
}
case 4:
{
alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, PDFObject::createName(COLOR_SPACE_NAME_DEVICE_CMYK), recursion, usedNames);
break;
}
default:
{
throw PDFException(PDFTranslationContext::tr("Can't determine alternate color space for ICC based profile. Number of components is %1.").arg(N));
break;
}
}
}
if (!alternateColorSpace)
{
throw PDFException(PDFTranslationContext::tr("Can't determine alternate color space for ICC based profile."));
}
Ranges ranges = { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f };
static_assert(ranges.size() == 8, "Fix initialization above!");
const size_t components = alternateColorSpace->getColorComponentCount();
const size_t rangeSize = 2 * components;
if (rangeSize > ranges.size())
{
throw PDFException(PDFTranslationContext::tr("Too much color components for ICC based profile."));
}
auto itStart = ranges.begin();
auto itEnd = std::next(itStart, rangeSize);
loader.readNumberArrayFromDictionary(dictionary, ICCBASED_RANGE, itStart, itEnd);
return PDFColorSpacePointer(new PDFICCBasedColorSpace(qMove(alternateColorSpace), ranges, qMove(iccProfileData), loader.readReferenceFromDictionary(dictionary, "Metadata")));
}
const PDFICCBasedColorSpace::Ranges& PDFICCBasedColorSpace::getRange() const
{
return m_range;
}
const QByteArray& PDFICCBasedColorSpace::getIccProfileData() const
{
return m_iccProfileData;
}
const QByteArray& PDFICCBasedColorSpace::getIccProfileDataChecksum() const
{
return m_iccProfileDataChecksum;
}
const PDFAbstractColorSpace* PDFICCBasedColorSpace::getAlternateColorSpace() const
{
return m_alternateColorSpace.data();
}
PDFIndexedColorSpace::PDFIndexedColorSpace(PDFColorSpacePointer baseColorSpace, QByteArray&& colors, int maxValue) :
m_baseColorSpace(qMove(baseColorSpace)),
m_colors(qMove(colors)),
m_maxValue(maxValue)
{
}
bool PDFIndexedColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFAbstractColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFIndexedColorSpace*>(other));
const PDFIndexedColorSpace* typedOther = static_cast<const PDFIndexedColorSpace*>(other);
const PDFAbstractColorSpace* baseColorSpace = typedOther->getBaseColorSpace().data();
if (static_cast<bool>(m_baseColorSpace.data()) != static_cast<bool>(baseColorSpace))
{
return false;
}
if (m_baseColorSpace && baseColorSpace && !m_baseColorSpace->equals(baseColorSpace))
{
return false;
}
return m_colors == typedOther->getColors() && m_maxValue == typedOther->getMaxValue();
}
PDFColor PDFIndexedColorSpace::getDefaultColorOriginal() const
{
return PDFColor(0.0f);
}
QColor PDFIndexedColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
// Indexed color space value must have exactly one component!
Q_ASSERT(color.size() == 1);
Q_UNUSED(isRange01);
const int colorIndex = qBound(MIN_VALUE, static_cast<int>(color[0]), m_maxValue);
const int componentCount = static_cast<int>(m_baseColorSpace->getColorComponentCount());
const int byteOffset = colorIndex * componentCount;
// We must point into the array. Check first and last component.
Q_ASSERT(byteOffset + componentCount - 1 < m_colors.size());
PDFColor decodedColor;
const char* bytePointer = m_colors.constData() + byteOffset;
for (int i = 0; i < componentCount; ++i)
{
const unsigned char value = *bytePointer++;
const PDFColorComponent component = static_cast<PDFColorComponent>(value) / 255.0f;
decodedColor.push_back(component);
}
return m_baseColorSpace->getColor(decodedColor, cms, intent, reporter, true);
}
size_t PDFIndexedColorSpace::getColorComponentCount() const
{
return 1;
}
QImage PDFIndexedColorSpace::getImage(const PDFImageData& imageData,
const PDFImageData& softMask,
const PDFCMS* cms,
RenderingIntent intent,
PDFRenderErrorReporter* reporter) const
{
if (imageData.isValid())
{
switch (imageData.getMaskingType())
{
case PDFImageData::MaskingType::None:
{
QImage image(imageData.getWidth(), imageData.getHeight(), QImage::Format_RGB888);
image.fill(QColor(Qt::white));
unsigned int componentCount = imageData.getComponents();
PDFBitReader reader(&imageData.getData(), imageData.getBitsPerComponent());
if (componentCount != getColorComponentCount())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for indexed color space. Color space has %1 colors. Provided color count is %4.").arg(getColorComponentCount()).arg(componentCount));
}
Q_ASSERT(componentCount == 1);
PDFColor color;
color.resize(1);
for (unsigned int i = 0, rowCount = imageData.getHeight(); i < rowCount; ++i)
{
reader.seek(i * imageData.getStride());
unsigned char* outputLine = image.scanLine(i);
for (unsigned int j = 0; j < imageData.getWidth(); ++j)
{
PDFBitReader::Value index = reader.read();
color[0] = index;
QColor transformedColor = getColor(color, cms, intent, reporter, false);
QRgb rgb = transformedColor.rgb();
*outputLine++ = qRed(rgb);
*outputLine++ = qGreen(rgb);
*outputLine++ = qBlue(rgb);
}
}
return image;
}
case PDFImageData::MaskingType::SoftMask:
{
const bool hasMatte = !softMask.getMatte().empty();
QImage image(imageData.getWidth(), imageData.getHeight(), hasMatte ? QImage::Format_RGBA8888_Premultiplied : QImage::Format_RGBA8888);
unsigned int componentCount = imageData.getComponents();
PDFBitReader reader(&imageData.getData(), imageData.getBitsPerComponent());
if (componentCount != getColorComponentCount())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for indexed color space. Color space has %1 colors. Provided color count is %4.").arg(getColorComponentCount()).arg(componentCount));
}
Q_ASSERT(componentCount == 1);
PDFColor color;
color.resize(1);
QImage alphaMask = createAlphaMask(softMask);
if (alphaMask.size() != image.size())
{
// Scale the alpha mask, if it is masked
alphaMask = alphaMask.scaled(image.size());
}
for (unsigned int i = 0, rowCount = imageData.getHeight(); i < rowCount; ++i)
{
reader.seek(i * imageData.getStride());
unsigned char* outputLine = image.scanLine(i);
unsigned char* alphaLine = alphaMask.scanLine(i);
for (unsigned int j = 0; j < imageData.getWidth(); ++j)
{
PDFBitReader::Value index = reader.read();
color[0] = index;
QColor transformedColor = getColor(color, cms, intent, reporter, false);
QRgb rgb = transformedColor.rgb();
*outputLine++ = qRed(rgb);
*outputLine++ = qGreen(rgb);
*outputLine++ = qBlue(rgb);
*outputLine++ = *alphaLine++;
}
}
return image;
}
default:
throw PDFRendererException(RenderErrorType::NotImplemented, PDFTranslationContext::tr("Image masking not implemented!"));
}
}
return QImage();
}
PDFColorSpacePointer PDFIndexedColorSpace::createIndexedColorSpace(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFArray* array,
int recursion,
std::set<QByteArray>& usedNames)
{
Q_ASSERT(array->getCount() == 4);
// Read base color space
PDFColorSpacePointer baseColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(array->getItem(1)), recursion, usedNames);
if (!baseColorSpace)
{
throw PDFException(PDFTranslationContext::tr("Can't determine base color space for indexed color space."));
}
// Read maximum value
PDFDocumentDataLoaderDecorator loader(document);
const int maxValue = qBound<int>(MIN_VALUE, loader.readInteger(array->getItem(2), 0), MAX_VALUE);
// Read stream/byte string with corresponding color values
QByteArray colors;
const PDFObject& colorDataObject = document->getObject(array->getItem(3));
if (colorDataObject.isString())
{
colors = colorDataObject.getString();
}
else if (colorDataObject.isStream())
{
colors = document->getDecodedStream(colorDataObject.getStream());
}
// Check, if we have enough colors
const int colorCount = maxValue - MIN_VALUE + 1;
const int componentCount = static_cast<int>(baseColorSpace->getColorComponentCount());
const int byteCount = colorCount * componentCount;
if (byteCount > colors.size())
{
throw PDFException(PDFTranslationContext::tr("Invalid colors for indexed color space. Color space has %1 colors, %2 color components and must have %3 size. Provided size is %4.").arg(colorCount).arg(componentCount).arg(byteCount).arg(colors.size()));
}
return PDFColorSpacePointer(new PDFIndexedColorSpace(qMove(baseColorSpace), qMove(colors), maxValue));
}
PDFColorSpacePointer PDFIndexedColorSpace::getBaseColorSpace() const
{
return m_baseColorSpace;
}
std::vector<PDFColorComponent> PDFIndexedColorSpace::transformColorsToBaseColorSpace(const PDFColorBuffer buffer) const
{
const std::size_t colorComponentCount = m_baseColorSpace->getColorComponentCount();
std::vector<PDFColorComponent> result(buffer.size() * colorComponentCount, 0.0f);
auto outputIt = result.begin();
for (PDFColorComponent input : buffer)
{
const int colorIndex = qBound(MIN_VALUE, static_cast<int>(input), m_maxValue);
const int byteOffset = int(colorIndex * colorComponentCount);
// We must point into the array. Check first and last component.
Q_ASSERT(byteOffset + colorComponentCount - 1 < m_colors.size());
const char* bytePointer = m_colors.constData() + byteOffset;
for (int i = 0; i < colorComponentCount; ++i)
{
const unsigned char value = *bytePointer++;
const PDFColorComponent component = static_cast<PDFColorComponent>(value) / 255.0f;
Q_ASSERT(outputIt != result.cend());
*outputIt++ = component;
}
}
Q_ASSERT(outputIt == result.cend());
return result;
}
int PDFIndexedColorSpace::getMaxValue() const
{
return m_maxValue;
}
const QByteArray& PDFIndexedColorSpace::getColors() const
{
return m_colors;
}
PDFSeparationColorSpace::PDFSeparationColorSpace(QByteArray&& colorName, PDFColorSpacePointer alternateColorSpace, PDFFunctionPtr tintTransform) :
m_colorName(qMove(colorName)),
m_alternateColorSpace(qMove(alternateColorSpace)),
m_tintTransform(qMove(tintTransform)),
m_isNone(m_colorName == "None"),
m_isAll(m_colorName == "All")
{
}
bool PDFSeparationColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFAbstractColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFSeparationColorSpace*>(other));
const PDFSeparationColorSpace* typedOther = static_cast<const PDFSeparationColorSpace*>(other);
const PDFAbstractColorSpace* alternateColorSpace = typedOther->getAlternateColorSpace().data();
if (static_cast<bool>(m_alternateColorSpace.data()) != static_cast<bool>(alternateColorSpace))
{
return false;
}
if (m_alternateColorSpace && alternateColorSpace && !m_alternateColorSpace->equals(alternateColorSpace))
{
return false;
}
return m_colorName == typedOther->getColorName();
}
PDFColor PDFSeparationColorSpace::getDefaultColorOriginal() const
{
return PDFColor(1.0f);
}
QColor PDFSeparationColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
// Separation color space value must have exactly one component!
Q_ASSERT(color.size() == 1);
Q_UNUSED(isRange01);
// According to the PDF 2.0 specification, separation color space, with colorant name "None"
// should not produce any visible output.
if (m_isNone)
{
return Qt::transparent;
}
// Input value
double tint = color.back();
// Jakub Melka: According to the PDF 2.0 specification, separation color space, with colorant name "All"
// should apply tint value to all output colorants, alternate color space and tint function should
// be ignored, and because QColor is aditive, we must invert the tint value.
if (m_isAll)
{
const double inversedTint = qBound(0.0, 1.0 - tint, 1.0);
return QColor::fromRgbF(inversedTint, inversedTint, inversedTint);
}
// Output values
std::vector<double> outputColor;
outputColor.resize(m_alternateColorSpace->getColorComponentCount(), 0.0);
PDFFunction::FunctionResult result = m_tintTransform->apply(&tint, &tint + 1, outputColor.data(), outputColor.data() + outputColor.size());
if (result)
{
PDFColor color;
std::for_each(outputColor.cbegin(), outputColor.cend(), [&color](double value) { color.push_back(static_cast<float>(value)); });
return m_alternateColorSpace->getColor(color, cms, intent, reporter, false);
}
else
{
// Return invalid color
return QColor();
}
}
size_t PDFSeparationColorSpace::getColorComponentCount() const
{
return 1;
}
std::vector<PDFColorComponent> PDFSeparationColorSpace::transformColorsToBaseColorSpace(const PDFColorBuffer buffer) const
{
const std::size_t colorComponentCount = m_alternateColorSpace->getColorComponentCount();
std::vector<PDFColorComponent> result(buffer.size() * colorComponentCount, 0.0f);
std::vector<double> outputColor;
outputColor.resize(colorComponentCount, 0.0);
auto outputIt = result.begin();
for (PDFColorComponent input : buffer)
{
// Input value
double tint = input;
Q_ASSERT(outputIt + (colorComponentCount - 1) != result.cend());
if (m_isAll)
{
const double inversedTint = qBound(0.0, 1.0 - tint, 1.0);
std::fill(outputIt, outputIt + colorComponentCount, inversedTint);
}
else
{
m_tintTransform->apply(&tint, &tint + 1, outputColor.data(), outputColor.data() + outputColor.size());
std::copy(outputColor.cbegin(), outputColor.cend(), outputIt);
}
outputIt = std::next(outputIt, colorComponentCount);
}
Q_ASSERT(outputIt == result.cend());
return result;
}
PDFColorSpacePointer PDFSeparationColorSpace::createSeparationColorSpace(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFArray* array,
int recursion,
std::set<QByteArray>& usedNames)
{
Q_ASSERT(array->getCount() == 4);
// Read color name
const PDFObject& colorNameObject = document->getObject(array->getItem(1));
if (!colorNameObject.isName())
{
throw PDFException(PDFTranslationContext::tr("Can't determine color name for separation color space."));
}
QByteArray colorName = colorNameObject.getString();
// Read alternate color space
PDFColorSpacePointer alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(array->getItem(2)), recursion, usedNames);
if (!alternateColorSpace)
{
throw PDFException(PDFTranslationContext::tr("Can't determine alternate color space for separation color space."));
}
PDFFunctionPtr tintTransform = PDFFunction::createFunction(document, array->getItem(3));
if (!tintTransform)
{
throw PDFException(PDFTranslationContext::tr("Can't determine tint transform for separation color space."));
}
return PDFColorSpacePointer(new PDFSeparationColorSpace(qMove(colorName), qMove(alternateColorSpace), qMove(tintTransform)));
}
PDFColorSpacePointer PDFSeparationColorSpace::getAlternateColorSpace() const
{
return m_alternateColorSpace;
}
const QByteArray& PDFSeparationColorSpace::getColorName() const
{
return m_colorName;
}
const unsigned char* PDFImageData::getRow(unsigned int rowIndex) const
{
const unsigned char* data = reinterpret_cast<const unsigned char*>(m_data.constData());
Q_ASSERT(rowIndex < m_height);
return data + (rowIndex * m_stride);
}
bool PDFPatternColorSpace::equals(const PDFAbstractColorSpace* other) const
{
// Compare pointers
return this == other;
}
QColor PDFPatternColorSpace::getDefaultColor(const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter) const
{
Q_UNUSED(cms);
Q_UNUSED(intent);
Q_UNUSED(reporter);
return QColor(Qt::transparent);
}
PDFColor PDFPatternColorSpace::getDefaultColorOriginal() const
{
return PDFColor();
}
QColor PDFPatternColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_UNUSED(color);
Q_UNUSED(cms);
Q_UNUSED(intent);
Q_UNUSED(reporter);
Q_UNUSED(isRange01);
throw PDFException(PDFTranslationContext::tr("Pattern doesn't have defined uniform color."));
}
size_t PDFPatternColorSpace::getColorComponentCount() const
{
return 0;
}
PDFDeviceNColorSpace::PDFDeviceNColorSpace(PDFDeviceNColorSpace::Type type,
PDFDeviceNColorSpace::Colorants&& colorants,
PDFColorSpacePointer alternateColorSpace,
PDFColorSpacePointer processColorSpace,
PDFFunctionPtr tintTransform,
std::vector<QByteArray>&& colorantsPrintingOrder,
std::vector<QByteArray> processColorSpaceComponents) :
m_type(type),
m_colorants(qMove(colorants)),
m_alternateColorSpace(qMove(alternateColorSpace)),
m_processColorSpace(qMove(processColorSpace)),
m_tintTransform(qMove(tintTransform)),
m_colorantsPrintingOrder(qMove(colorantsPrintingOrder)),
m_processColorSpaceComponents(qMove(processColorSpaceComponents)),
m_isNone(false)
{
m_isNone = std::all_of(m_colorants.cbegin(), m_colorants.cend(), [](const auto& colorant) { return colorant.name == "None"; });
}
bool PDFDeviceNColorSpace::equals(const PDFAbstractColorSpace* other) const
{
if (!PDFAbstractColorSpace::equals(other))
{
return false;
}
Q_ASSERT(dynamic_cast<const PDFDeviceNColorSpace*>(other));
const PDFDeviceNColorSpace* typedOther = static_cast<const PDFDeviceNColorSpace*>(other);
const PDFAbstractColorSpace* alternateColorSpace = typedOther->getAlternateColorSpace().data();
if (static_cast<bool>(m_alternateColorSpace.data()) != static_cast<bool>(alternateColorSpace))
{
return false;
}
if (m_alternateColorSpace && alternateColorSpace && !m_alternateColorSpace->equals(alternateColorSpace))
{
return false;
}
const Colorants& colorants = typedOther->getColorants();
if (m_colorants.size() != colorants.size())
{
return false;
}
for (size_t i = 0; i < m_colorants.size(); ++i)
{
if (m_colorants[i].name != colorants[i].name)
{
return false;
}
}
return true;
}
PDFColor PDFDeviceNColorSpace::getDefaultColorOriginal() const
{
PDFColor color;
color.resize(getColorComponentCount());
// Jakub Melka: According to the PDF 2.0 specification, each channel should
// be initially set to 1.0.
for (size_t i = 0, colorComponentCount = color.size(); i < colorComponentCount; ++i)
{
color[i] = 1.0;
}
return color;
}
QColor PDFDeviceNColorSpace::getColor(const PDFColor& color, const PDFCMS* cms, RenderingIntent intent, PDFRenderErrorReporter* reporter, bool isRange01) const
{
Q_UNUSED(isRange01);
// According to the PDF 2.0 specification, DeviceN color space, with all colorant name "None"
// should not produce any visible output.
if (m_isNone)
{
return Qt::transparent;
}
// Input values
std::vector<double> inputColor(color.size(), 0.0);
for (size_t i = 0, count = inputColor.size(); i < count; ++i)
{
inputColor[i] = color[i];
}
// Output values
std::vector<double> outputColor;
outputColor.resize(m_alternateColorSpace->getColorComponentCount(), 0.0);
PDFFunction::FunctionResult result = m_tintTransform->apply(inputColor.data(), inputColor.data() + inputColor.size(), outputColor.data(), outputColor.data() + outputColor.size());
if (result)
{
PDFColor color;
std::for_each(outputColor.cbegin(), outputColor.cend(), [&color](double value) { color.push_back(static_cast<float>(value)); });
return m_alternateColorSpace->getColor(color, cms, intent, reporter, false);
}
else
{
// Return invalid color
return QColor();
}
}
size_t PDFDeviceNColorSpace::getColorComponentCount() const
{
return m_colorants.size();
}
std::vector<PDFColorComponent> PDFDeviceNColorSpace::transformColorsToBaseColorSpace(const PDFColorBuffer buffer) const
{
std::vector<PDFColorComponent> result;
const std::size_t colorantCount = getColorComponentCount();
if (colorantCount > 0)
{
const std::size_t inputColorCount = buffer.size() / colorantCount;
const std::size_t alternateColorSpaceComponentCount = m_alternateColorSpace->getColorComponentCount();
result.resize(inputColorCount * alternateColorSpaceComponentCount, 0.0f);
std::vector<double> inputColor(colorantCount, 0.0);
std::vector<double> outputColor(alternateColorSpaceComponentCount, 0.0);
auto outputIt = result.begin();
for (auto it = buffer.begin(); it != buffer.end(); it = std::next(it, colorantCount))
{
std::copy(it, it + colorantCount, inputColor.begin());
m_tintTransform->apply(inputColor.data(), inputColor.data() + inputColor.size(), outputColor.data(), outputColor.data() + outputColor.size());
std::copy(outputColor.cbegin(), outputColor.cend(), outputIt);
outputIt = std::next(outputIt, alternateColorSpaceComponentCount);
}
Q_ASSERT(outputIt == result.cend());
}
return result;
}
PDFColorSpacePointer PDFDeviceNColorSpace::createDeviceNColorSpace(const PDFDictionary* colorSpaceDictionary,
const PDFDocument* document,
const PDFArray* array,
int recursion,
std::set<QByteArray>& usedNames)
{
Q_ASSERT(array->getCount() >= 4);
PDFDocumentDataLoaderDecorator loader(document);
std::vector<QByteArray> colorantNames = loader.readNameArray(array->getItem(1));
if (colorantNames.empty())
{
throw PDFException(PDFTranslationContext::tr("Invalid colorants for DeviceN color space."));
}
std::vector<ColorantInfo> colorants;
colorants.resize(colorantNames.size());
for (size_t i = 0; i < colorantNames.size(); ++i)
{
colorants[i].name = qMove(colorantNames[i]);
}
// Read alternate color space
PDFColorSpacePointer alternateColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(array->getItem(2)), recursion, usedNames);
if (!alternateColorSpace)
{
throw PDFException(PDFTranslationContext::tr("Can't determine alternate color space for DeviceN color space."));
}
PDFFunctionPtr tintTransform = PDFFunction::createFunction(document, array->getItem(3));
if (!tintTransform)
{
throw PDFException(PDFTranslationContext::tr("Can't determine tint transform for DeviceN color space."));
}
Type type = Type::DeviceN;
std::vector<QByteArray> colorantsPrintingOrder;
PDFColorSpacePointer processColorSpace;
std::vector<QByteArray> processColorSpaceComponents;
// Now, check, if we have attributes, and if yes, then read them
if (array->getCount() == 5)
{
const PDFObject& object = document->getObject(array->getItem(4));
if (object.isDictionary())
{
const PDFDictionary* attributesDictionary = object.getDictionary();
QByteArray subtype = loader.readNameFromDictionary(attributesDictionary, "Subtype");
if (subtype == "NChannel")
{
type = Type::NChannel;
}
const PDFObject& colorantsObject = document->getObject(attributesDictionary->get("Colorants"));
if (colorantsObject.isDictionary())
{
const PDFDictionary* colorantsDictionary = colorantsObject.getDictionary();
// Separation color spaces for each colorant
for (ColorantInfo& colorantInfo : colorants)
{
if (colorantsDictionary->hasKey(colorantInfo.name))
{
colorantInfo.separationColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, document->getObject(colorantsDictionary->get(colorantInfo.name)), recursion, usedNames);
}
}
}
const PDFObject& mixingHints = document->getObject(attributesDictionary->get("MixingHints"));
if (mixingHints.isDictionary())
{
const PDFDictionary* mixingHintsDictionary = mixingHints.getDictionary();
// Printing order
colorantsPrintingOrder = loader.readNameArray(mixingHintsDictionary->get("PrintingOrder"));
// Solidities
const PDFObject& solidityObject = document->getObject(mixingHintsDictionary->get("Solidites"));
if (solidityObject.isDictionary())
{
const PDFDictionary* solidityDictionary = solidityObject.getDictionary();
const PDFReal defaultSolidity = loader.readNumberFromDictionary(solidityDictionary, "Default", 0.0);
for (ColorantInfo& colorantInfo : colorants)
{
colorantInfo.solidity = loader.readNumberFromDictionary(solidityDictionary, colorantInfo.name, defaultSolidity);
}
}
// Dot gain
const PDFObject& dotGainObject = document->getObject(mixingHintsDictionary->get("DotGain"));
if (dotGainObject.isDictionary())
{
const PDFDictionary* dotGainDictionary = dotGainObject.getDictionary();
for (ColorantInfo& colorantInfo : colorants)
{
const PDFObject& dotGainFunctionObject = document->getObject(dotGainDictionary->get(colorantInfo.name));
if (!dotGainFunctionObject.isNull())
{
colorantInfo.dotGain = PDFFunction::createFunction(document, dotGainFunctionObject);
}
}
}
}
// Process
const PDFObject& processObject = document->getObject(attributesDictionary->get("Process"));
if (processObject.isDictionary())
{
const PDFDictionary* processDictionary = processObject.getDictionary();
const PDFObject& processColorSpaceObject = document->getObject(processDictionary->get("ColorSpace"));
if (!processColorSpaceObject.isNull())
{
processColorSpace = PDFAbstractColorSpace::createColorSpaceImpl(colorSpaceDictionary, document, processColorSpaceObject, recursion, usedNames);
processColorSpaceComponents = loader.readNameArrayFromDictionary(processDictionary, "Components");
}
}
}
}
return PDFColorSpacePointer(new PDFDeviceNColorSpace(type, qMove(colorants), qMove(alternateColorSpace), qMove(processColorSpace), qMove(tintTransform), qMove(colorantsPrintingOrder), qMove(processColorSpaceComponents)));
}
} // namespace pdf