PDF4QT/PdfForQtLib/sources/pdftextlayout.cpp
2019-12-29 17:25:18 +01:00

418 lines
15 KiB
C++

// Copyright (C) 2019 Jakub Melka
//
// This file is part of PdfForQt.
//
// PdfForQt is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// PdfForQt is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDFForQt. If not, see <https://www.gnu.org/licenses/>.
#include "pdftextlayout.h"
#include "pdfutils.h"
#include <execution>
namespace pdf
{
PDFTextLayout::PDFTextLayout()
{
}
void PDFTextLayout::addCharacter(const PDFTextCharacterInfo& info)
{
TextCharacter character;
// Fill the basic info. For computing the angle, we must consider, if we are
// in vertical writing system. If yes, take vertical edge of the character,
// otherwise take horizontal edge.
character.character = info.character;
character.position = info.matrix.map(QPointF(0.0, 0.0));
QLineF testLine(QPointF(0.0, 0.0), QPointF(info.isVerticalWritingSystem ? 0.0 : info.advance, !info.isVerticalWritingSystem ? 0.0 : info.advance));
QLineF mappedLine = info.matrix.map(testLine);
character.advance = mappedLine.length();
character.angle = qRound(mappedLine.angle());
QLineF fontTestLine(QPointF(0.0, 0.0), QPointF(0.0, info.fontSize));
QLineF fontMappedLine = info.matrix.map(fontTestLine);
character.fontSize = fontMappedLine.length();
QRectF boundingBox = info.outline.boundingRect();
character.boundingBox.addPolygon(info.matrix.map(boundingBox));
m_characters.emplace_back(qMove(character));
m_angles.insert(character.angle);
}
void PDFTextLayout::perform()
{
for (PDFReal angle : m_angles)
{
performDoLayout(angle);
}
}
void PDFTextLayout::optimize()
{
m_characters.shrink_to_fit();
}
qint64 PDFTextLayout::getMemoryConsumptionEstimate() const
{
qint64 estimate = sizeof(*this);
estimate += sizeof(decltype(m_characters)::value_type) * m_characters.capacity();
estimate += sizeof(decltype(m_angles)::value_type) * m_angles.size();
return estimate;
}
struct NearestCharacterInfo
{
size_t index = std::numeric_limits<size_t>::max();
PDFReal distance = std::numeric_limits<PDFReal>::infinity();
inline bool operator<(const NearestCharacterInfo& other) const { return distance < other.distance; }
};
void PDFTextLayout::performDoLayout(PDFReal angle)
{
// We will implement variation of 'docstrum' algorithm, we have divided characters by angles,
// for each angle we get characters for that particular angle, and run 'docstrum' algorithm.
// We will do following steps:
// 1) Rotate the plane with characters so that they are all in horizontal line
// 2) Find k-nearest characters for each character (so each character will have
// k pointers to the nearest characters)
// 3) Find text lines. We will do that by creating transitive closure of characters, i.e.
// characters, which are close and are on horizontal line, are marked as in one text line.
// Consider also font size and empty space size between different characters.
// 4) Merge text lines into text blocks using various criteria, such as overlap,
// distance between the lines, and also using again, transitive closure.
// 5) Sort blocks using topological ordering
TextCharacters characters = getCharactersForAngle(angle);
// Step 1) - rotate blocks
QMatrix angleMatrix;
angleMatrix.rotate(angle);
applyTransform(characters, angleMatrix);
// Step 2) - find k-nearest characters
const size_t characterCount = characters.size();
const size_t bucketSize = m_settings.samples + 1;
std::vector<NearestCharacterInfo> nearestCharacters(bucketSize * characters.size(), NearestCharacterInfo());
auto findNearestCharacters = [this, bucketSize, characterCount, &characters, &nearestCharacters](size_t currentCharacterIndex)
{
// It will be iterator to the start of the nearest neighbour sequence
auto it = std::next(nearestCharacters.begin(), currentCharacterIndex * bucketSize);
auto itLast = std::next(it, m_settings.samples);
NearestCharacterInfo& insertInfo = *itLast;
QPointF currentPoint = characters[currentCharacterIndex].position;
for (size_t i = 0; i < characterCount; ++i)
{
if (i == currentCharacterIndex)
{
continue;
}
insertInfo.index = i;
insertInfo.distance = QLineF(currentPoint, characters[i].position).length();
// Now, use insert sort to sort the array of samples + 1 elements (#samples elements
// are sorted, we use only insert sort on the last element).
auto itLeft = std::prev(itLast);
auto itRight = itLast;
while (true)
{
if (*itRight < *itLeft)
{
std::swap(*itRight, *itLeft);
itRight = itLeft;
if (itLeft == it)
{
// We have reached the end
break;
}
--itLeft;
}
else
{
// We have proper order, break the cycle
break;
}
}
}
};
auto range = PDFIntegerRange<size_t>(0, characterCount);
std::for_each(std::execution::parallel_policy(), range.begin(), range.end(), findNearestCharacters);
// Step 3) - detect lines
PDFUnionFindAlgorithm<size_t> textLinesUF(characterCount);
for (size_t i = 0; i < characterCount; ++i)
{
auto it = std::next(nearestCharacters.begin(), i * bucketSize);
auto itEnd = std::next(it, m_settings.samples);
for (; it != itEnd; ++it)
{
const NearestCharacterInfo& info = *it;
if (info.index == std::numeric_limits<size_t>::max())
{
// We have reached the end - or we do not have enough characters
break;
}
// Criteria:
// 1) Distance of characters is not too large
// 2) Characters are approximately at same line
// 3) Font size of characters are approximately equal
PDFReal fontSizeMax = qMax(characters[i].fontSize, characters[info.index].fontSize);
PDFReal fontSizeMin = qMin(characters[i].fontSize, characters[info.index].fontSize);
if (info.distance < m_settings.distanceSensitivity * characters[i].advance && // 1)
std::fabs(characters[i].position.y() - characters[info.index].position.y()) < fontSizeMin * m_settings.charactersOnLineSensitivity && // 2)
fontSizeMax / fontSizeMin < m_settings.fontSensitivity) // 3)
{
textLinesUF.unify(i, info.index);
}
}
}
std::map<size_t, TextCharacters> lineToCharactersMap;
for (size_t i = 0; i < characterCount; ++i)
{
lineToCharactersMap[textLinesUF.find(i)].push_back(characters[i]);
}
PDFTextLines lines;
lines.reserve(lineToCharactersMap.size());
for (auto& item : lineToCharactersMap)
{
lines.emplace_back(qMove(item.second));
}
// Step 4) - detect text blocks
const size_t lineCount = lines.size();
PDFUnionFindAlgorithm<size_t> textBlocksUF(lineCount);
for (size_t i = 0; i < lineCount; ++i)
{
for (size_t j = i + 1; j < lineCount; ++j)
{
QRectF bb1 = lines[i].getBoundingBox().boundingRect();
QRectF bb2 = lines[j].getBoundingBox().boundingRect();
// Jakub Melka: we will join two blocks, if these two conditions both holds:
// 1) bounding boxes overlap horizontally by large portion
// 2) vertical space between bounding boxes is not too large
QRectF bbUnion = bb1.united(bb2);
const PDFReal height = bbUnion.height();
const PDFReal heightLimit = (bb1.height() + bb2.height()) * m_settings.blockVerticalSensitivity;
const PDFReal overlap = qMax(0.0, bb1.width() + bb2.width() - bbUnion.width());
const PDFReal minimalOverlap = qMin(bb1.width(), bb2.width()) * m_settings.blockOverlapSensitivity;
if (height < heightLimit && overlap > minimalOverlap)
{
textBlocksUF.unify(i, j);
}
}
}
std::map<size_t, PDFTextLines> blockToLines;
for (size_t i = 0; i < lineCount; ++i)
{
blockToLines[textBlocksUF.find(i)].push_back(qMove(lines[i]));
}
PDFTextBlocks blocks;
blocks.reserve(blockToLines.size());
for (auto& item : blockToLines)
{
blocks.emplace_back(qMove(item.second));
}
// 5) Sort block by topological ordering. We will use approache described in paper
// "High Performance Document Layout Analysis", T.M. Breuel, 2003, where are described
// two rules, which are used to determine block precedence.
//
// Rule 1: a<b, if:
// - blocks a,b have overlap in x-axis
// - block a is above block b
//
// Rule 2: a<b, if:
// - block a is entirely on left side of block b
// - there doesn't exist block c, which is between a,b in y-axis
// and moreover, overlaps both a and b in x-axis.
auto isBeforeByRule1 = [&blocks](const size_t aIndex, const size_t bIndex)
{
QRectF aBB = blocks[aIndex].getBoundingBox().boundingRect();
QRectF bBB = blocks[bIndex].getBoundingBox().boundingRect();
const bool isOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(aBB, bBB);
const bool isAoverB = aBB.bottom() > bBB.top();
return isOverlappedOnHorizontalAxis && isAoverB;
};
auto isBeforeByRule2 = [&blocks](const size_t aIndex, const size_t bIndex)
{
QRectF aBB = blocks[aIndex].getBoundingBox().boundingRect();
QRectF bBB = blocks[bIndex].getBoundingBox().boundingRect();
QRectF abBB = aBB.united(bBB);
if (aBB.right() < bBB.left())
{
// Check, if 'c' block doesn't exist
for (size_t i = 0, count = blocks.size(); i < count; ++i)
{
if (i == aIndex || i == bIndex)
{
continue;
}
QRectF cBB = blocks[i].getBoundingBox().boundingRect();
if (cBB.top() >= abBB.top() && cBB.bottom() <= abBB.bottom())
{
const bool isAOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(aBB, cBB);
const bool isBOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(bBB, cBB);
if (isAOverlappedOnHorizontalAxis && isBOverlappedOnHorizontalAxis)
{
return false;
}
}
}
return true;
}
return false;
};
// Order blocks using topological sort (https://en.wikipedia.org/wiki/Topological_sorting,
// Kahn's algorithm is used)
std::set<size_t> workBlocks;
std::vector<size_t> ordering;
std::vector<std::set<size_t>> orderingEdges(blocks.size(), std::set<size_t>());
ordering.reserve(blocks.size());
for (size_t i = 0; i < blocks.size(); ++i)
{
workBlocks.insert(workBlocks.end(), i);
for (size_t j = 0; j < blocks.size(); ++j)
{
if (i != j && (isBeforeByRule1(j, i) || isBeforeByRule2(j, i)))
{
orderingEdges[i].insert(j);
}
}
}
// Topological sort
QMatrix invertedAngleMatrix = angleMatrix.inverted();
while (!workBlocks.empty())
{
auto it = std::min_element(workBlocks.begin(), workBlocks.end(), [&orderingEdges](const size_t l, const size_t r) { return orderingEdges[l].size() < orderingEdges[r].size(); });
ordering.push_back(*it);
for (std::set<size_t>& edges : orderingEdges)
{
edges.erase(*it);
}
blocks[*it].applyTransform(invertedAngleMatrix);
m_blocks.emplace_back(qMove(blocks[*it]));
workBlocks.erase(it);
}
}
TextCharacters PDFTextLayout::getCharactersForAngle(PDFReal angle) const
{
TextCharacters result;
std::copy_if(m_characters.cbegin(), m_characters.cend(), std::back_inserter(result), [angle](const TextCharacter& character) { return character.angle == angle; });
return result;
}
void PDFTextLayout::applyTransform(TextCharacters& characters, const QMatrix& matrix)
{
for (TextCharacter& character : characters)
{
character.position = matrix.map(character.position);
character.boundingBox = matrix.map(character.boundingBox);
}
}
PDFTextLine::PDFTextLine(TextCharacters characters) :
m_characters(qMove(characters))
{
std::sort(m_characters.begin(), m_characters.end(), [](const TextCharacter& l, const TextCharacter& r) { return l.position.x() < r.position.x(); });
QRectF boundingBox;
for (const TextCharacter& character : m_characters)
{
boundingBox = boundingBox.united(character.boundingBox.boundingRect());
}
m_boundingBox.addRect(boundingBox);
m_topLeft = boundingBox.topLeft();
}
void PDFTextLine::applyTransform(const QMatrix& matrix)
{
m_boundingBox = matrix.map(m_boundingBox);
m_topLeft = matrix.map(m_topLeft);
for (TextCharacter& character : m_characters)
{
character.applyTransform(matrix);
}
}
PDFTextBlock::PDFTextBlock(PDFTextLines textLines) :
m_lines(qMove(textLines))
{
auto sortFunction = [](const PDFTextLine& l, const PDFTextLine& r)
{
QRectF bl = l.getBoundingBox().boundingRect();
QRectF br = r.getBoundingBox().boundingRect();
const PDFReal xL = bl.x();
const PDFReal xR = br.x();
const PDFReal yL = qRound(bl.y() * 100.0);
const PDFReal yR = qRound(br.y() * 100.0);
return std::tie(-yL, xL) < std::tie(-yR, xR);
};
std::sort(m_lines.begin(), m_lines.end(), sortFunction);
QRectF boundingBox;
for (const PDFTextLine& line : m_lines)
{
boundingBox = boundingBox.united(line.getBoundingBox().boundingRect());
}
m_boundingBox.addRect(boundingBox);
m_topLeft = boundingBox.topLeft();
}
void PDFTextBlock::applyTransform(const QMatrix& matrix)
{
m_boundingBox = matrix.map(m_boundingBox);
m_topLeft = matrix.map(m_topLeft);
for (PDFTextLine& textLine : m_lines)
{
textLine.applyTransform(matrix);
}
}
void TextCharacter::applyTransform(const QMatrix& matrix)
{
position = matrix.map(position);
boundingBox = matrix.map(boundingBox);
}
} // namespace pdf