PDF4QT/Pdf4QtLib/sources/pdftextlayout.cpp
Raphael Cotty cbeb91fe18 Linux port
2021-10-29 18:42:18 +02:00

1609 lines
53 KiB
C++

// Copyright (C) 2019-2021 Jakub Melka
//
// This file is part of PDF4QT.
//
// PDF4QT is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// with the written consent of the copyright owner, any later version.
//
// PDF4QT is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDF4QT. If not, see <https://www.gnu.org/licenses/>.
#include "pdftextlayout.h"
#include "pdfutils.h"
#include "pdfexecutionpolicy.h"
#include <QPainter>
#include <execution>
namespace pdf
{
/// Spatial 2D index for indexing of text characters. It is a R-tree like structure,
/// build over an array of text characters. Array is modified (structure is build over
/// array).
class PDFTextCharacterSpatialIndex
{
public:
explicit PDFTextCharacterSpatialIndex(TextCharacters* characters, size_t leafSize) :
m_characters(characters),
m_leafSize(leafSize),
m_epsilon(0.0)
{
m_nodes.reserve(2 * characters->size() / leafSize);
// Calculate epsilon from the bounding box. We must use epsilon to avoid empty
// rectangles, which can occur, if text is on a single line.
QRectF boundingBox = getBoundingBox(characters->begin(), characters->end());
if (boundingBox.isValid())
{
qreal edge = qMax(boundingBox.width(), boundingBox.height());
m_epsilon = edge * 0.001;
}
else
{
m_epsilon = 0.01;
}
build(characters->begin(), characters->end());
}
using Iterator = TextCharacters::iterator;
/// Builds structure over range of iterators. Array is build in O(n * log^2 (n)) time.
/// Index to internal nodes array is returned.
/// \param it1 Start iterator
/// \param it2 End iterator
size_t build(Iterator it1, Iterator it2);
/// Returns bounding box of character positions over given iterator range.
/// If iterator range is empty, then empty bounding box is returned.
/// \param it1 Start iterator
/// \param it2 End iterator
QRectF getBoundingBox(Iterator it1, Iterator it2) const;
/// Performs query on structure - finds all characters, which are in given
/// rectangle, and returns intersection size. If \p result parameter is set
/// to valid pointer, all intersected characters are inserted into the result
/// array.
/// \param rect Query rectangle
/// \param result Result of query (can be nullptr)
/// \returns Size of intersection
size_t query(const QRectF& rect, TextCharacters* result) const;
/// Finds character array, which contains at least \p minimalSize characters,
/// with some extra characters, which must be filtered out.
/// \param minimalSize Minimal size
/// \param sample Sample character
/// \param result Result
void queryNearestEstimate(size_t minimalSize, const TextCharacter& sample, TextCharacters* result) const;
private:
size_t queryImpl(size_t nodeIndex, const QRectF& rect, TextCharacters* result) const;
struct Node
{
bool isLeaf = false;
size_t index1 = 0;
size_t index2 = 0;
QRectF boundingBox;
};
using Nodes = std::vector<Node>;
TextCharacters* m_characters;
Nodes m_nodes;
size_t m_leafSize;
qreal m_epsilon;
};
size_t PDFTextCharacterSpatialIndex::build(Iterator it1, Iterator it2)
{
size_t nodeIndex = m_nodes.size();
if (size_t(std::distance(it1, it2)) < m_leafSize)
{
// Create leaf node
Node node;
node.isLeaf = true;
node.index1 = std::distance(m_characters->begin(), it1);
node.index2 = std::distance(m_characters->begin(), it2);
node.boundingBox = getBoundingBox(it1, it2);
m_nodes.push_back(qMove(node));
}
else
{
// Jakub Melka: split array of nodes into half, using larger side.
// It is like in R-tree structure.
m_nodes.push_back(Node());
QRectF boundingBox = getBoundingBox(it1, it2);
if (boundingBox.width() > boundingBox.height())
{
// Split using x-axis
std::sort(it1, it2, [](const TextCharacter& l, const TextCharacter& r) { return l.position.x() < r.position.x(); });
}
else
{
// Split using y-axis
std::sort(it1, it2, [](const TextCharacter& l, const TextCharacter& r) { return l.position.y() < r.position.y(); });
}
const size_t distance = std::distance(it1, it2);
Iterator itMid = std::next(it1, distance / 2);
const size_t index1 = build(it1, itMid);
const size_t index2 = build(itMid, it2);
Node& node = m_nodes[nodeIndex];
node.isLeaf = false;
node.index1 = index1;
node.index2 = index2;
node.boundingBox = boundingBox;
}
return nodeIndex;
}
QRectF PDFTextCharacterSpatialIndex::getBoundingBox(Iterator it1, Iterator it2) const
{
if (it1 != it2)
{
qreal x_min = qInf();
qreal x_max = -qInf();
qreal y_min = qInf();
qreal y_max = -qInf();
for (Iterator it = it1; it != it2; ++it)
{
const TextCharacter& character = *it;
x_min = qMin(x_min, character.position.x() - m_epsilon);
x_max = qMax(x_max, character.position.x() + m_epsilon);
y_min = qMin(y_min, character.position.y() - m_epsilon);
y_max = qMax(y_max, character.position.y() + m_epsilon);
}
return QRectF(x_min, y_min, x_max - x_min, y_max - y_min);
}
return QRectF();
}
size_t PDFTextCharacterSpatialIndex::query(const QRectF& rect, TextCharacters* result) const
{
if (!m_nodes.empty())
{
return queryImpl(0, rect, result);
}
return 0;
}
void PDFTextCharacterSpatialIndex::queryNearestEstimate(size_t minimalSize, const TextCharacter& sample, TextCharacters* result) const
{
if (m_characters->size() <= minimalSize)
{
*result = *m_characters;
}
else
{
// Query result
qreal querySizeEstimate = qMax(qMax(m_nodes[0].boundingBox.width(), m_nodes[0].boundingBox.height()) * 0.01, sample.advance * minimalSize * 0.5);
QRectF rect(sample.position, QSizeF(querySizeEstimate, querySizeEstimate));
rect.translate(-querySizeEstimate * 0.5, -querySizeEstimate * 0.5);
while (query(rect, nullptr) < minimalSize)
{
qreal expansion = rect.width() * 0.5;
rect.adjust(-expansion, -expansion, expansion, expansion);
}
qreal expansion = rect.width() * (qSqrt(2.0) - 1.0);
rect.adjust(-expansion, -expansion, expansion, expansion);
query(rect, result);
}
}
size_t PDFTextCharacterSpatialIndex::queryImpl(size_t nodeIndex, const QRectF& rect, TextCharacters* result) const
{
const Node& node = m_nodes[nodeIndex];
if (!node.boundingBox.intersects(rect))
{
// Node is not intersected, just return
return 0;
}
if (!node.isLeaf)
{
return queryImpl(node.index1, rect, result) + queryImpl(node.index2, rect, result);
}
else
{
// Jakub Melka: it is a leaf...
auto isInside = [&rect](const TextCharacter& character)
{
return rect.contains(character.position);
};
auto itStart = std::next(m_characters->begin(), node.index1);
auto itEnd = std::next(m_characters->begin(), node.index2);
if (result)
{
const size_t oldSize = result->size();
std::copy_if(itStart, itEnd, std::back_inserter(*result), isInside);
return result->size() - oldSize;
}
return std::count_if(itStart, itEnd, isInside);
}
}
PDFTextLayout::PDFTextLayout()
{
}
void PDFTextLayout::addCharacter(const PDFTextCharacterInfo& info)
{
TextCharacter character;
// Fill the basic info. For computing the angle, we must consider, if we are
// in vertical writing system. If yes, take vertical edge of the character,
// otherwise take horizontal edge.
character.character = info.character;
character.position = info.matrix.map(QPointF(0.0, 0.0));
QLineF testLine(QPointF(0.0, 0.0), QPointF(info.isVerticalWritingSystem ? 0.0 : info.advance, !info.isVerticalWritingSystem ? 0.0 : info.advance));
QLineF mappedLine = info.matrix.map(testLine);
character.advance = mappedLine.length();
character.angle = qRound(mappedLine.angle());
QLineF fontTestLine(QPointF(0.0, 0.0), QPointF(0.0, info.fontSize));
QLineF fontMappedLine = info.matrix.map(fontTestLine);
character.fontSize = fontMappedLine.length();
QRectF boundingBox = info.outline.boundingRect();
character.boundingBox.addPolygon(info.matrix.map(boundingBox));
m_characters.emplace_back(qMove(character));
m_angles.insert(character.angle);
}
void PDFTextLayout::perform()
{
for (PDFReal angle : m_angles)
{
performDoLayout(angle);
}
}
void PDFTextLayout::optimize()
{
m_characters.shrink_to_fit();
}
qint64 PDFTextLayout::getMemoryConsumptionEstimate() const
{
qint64 estimate = sizeof(*this);
estimate += sizeof(decltype(m_characters)::value_type) * m_characters.capacity();
estimate += sizeof(decltype(m_angles)::value_type) * m_angles.size();
return estimate;
}
bool PDFTextLayout::isHoveringOverTextBlock(const QPointF& point) const
{
for (const PDFTextBlock& block : m_blocks)
{
if (block.getBoundingBox().contains(point))
{
return true;
}
}
return false;
}
PDFTextSelection PDFTextLayout::createTextSelection(PDFInteger pageIndex, const QPointF& point1, const QPointF& point2, QColor selectionColor)
{
PDFTextSelection selection;
// Jakub Melka: We must treat each block in its own coordinate system. Because texts can
// have different angles, we will treat each block separately.
size_t blockId = 0;
for (PDFTextBlock& block : m_blocks)
{
QMatrix angleMatrix;
angleMatrix.rotate(block.getAngle());
block.applyTransform(angleMatrix);
QPointF pointA = angleMatrix.map(point1);
QPointF pointB = angleMatrix.map(point2);
const qreal xMin = qMin(pointA.x(), pointB.x());
const qreal yMin = qMin(pointA.y(), pointB.y());
const qreal xMax = qMax(pointA.x(), pointB.x());
const qreal yMax = qMax(pointA.y(), pointB.y());
QRectF rect(xMin, yMin, xMax - xMin, yMax - yMin);
QPainterPath rectPath;
rectPath.addRect(rect);
const QPainterPath& boundingBoxPath = block.getBoundingBox();
QPainterPath intersectionPath = boundingBoxPath.intersected(rectPath);
if (!intersectionPath.isEmpty())
{
QRectF intersectionRect = intersectionPath.boundingRect();
Q_ASSERT(intersectionRect.isValid());
bool isTopPointAboveText = false;
bool isBottomPointBelowText = false;
const PDFTextLines& lines = block.getLines();
auto itLineA = std::find_if(lines.cbegin(), lines.cend(), [pointA](const PDFTextLine& line) { return line.getBoundingBox().contains(pointA); });
auto itLineB = std::find_if(lines.cbegin(), lines.cend(), [pointB](const PDFTextLine& line) { return line.getBoundingBox().contains(pointB); });
if (itLineA == itLineB && itLineA != lines.cend())
{
// Both points are in the same line. We consider point with lesser
// horizontal coordinate as start selection point, and point with greater
// horizontal coordinate as end selection point.
if (pointA.x() > pointB.x())
{
std::swap(pointA, pointB);
}
}
else
{
// Otherwise points are not in the same line. Then start point will be
// point top of the second point. Bottom point will mark end of selection.
if (pointA.y() < pointB.y())
{
std::swap(pointA, pointB);
}
QRectF rect = boundingBoxPath.controlPointRect();
// If start point is above the text block, move start point to the left.
if (rect.bottom() < pointA.y())
{
pointA.setX(rect.left());
isTopPointAboveText = true;
}
if (rect.top() > pointB.y())
{
pointB.setX(rect.right());
isBottomPointBelowText = true;
}
}
// Now, we have pointA as start point and pointB as end point. We must found
// nearest character to the right of point A, and nearest character to the
// left of point B (with respect to point A/B).
qreal maxDistanceA = std::numeric_limits<qreal>::infinity();
qreal maxDistanceB = std::numeric_limits<qreal>::infinity();
PDFCharacterPointer ptrA;
PDFCharacterPointer ptrB;
for (size_t lineId = 0, linesCount = lines.size(); lineId < linesCount; ++lineId)
{
const PDFTextLine& line = lines[lineId];
const TextCharacters& characters = line.getCharacters();
for (size_t characterId = 0, characterCount = characters.size(); characterId < characterCount; ++characterId)
{
const TextCharacter& character = characters[characterId];
QPointF characterCenter = character.boundingBox.boundingRect().center();
qreal distanceA = QLineF(pointA, characterCenter).length();
qreal distanceB = QLineF(pointB, characterCenter).length();
if (distanceA < maxDistanceA && characterCenter.x() > pointA.x())
{
maxDistanceA = distanceA;
ptrA.pageIndex = pageIndex;
ptrA.blockIndex = blockId;
ptrA.lineIndex = lineId;
ptrA.characterIndex = characterId;
}
if (distanceB < maxDistanceB && characterCenter.x() < pointB.x())
{
maxDistanceB = distanceB;
ptrB.pageIndex = pageIndex;
ptrB.blockIndex = blockId;
ptrB.lineIndex = lineId;
ptrB.characterIndex = characterId;
}
}
}
if (isTopPointAboveText && !lines.empty())
{
ptrA.pageIndex = pageIndex;
ptrA.blockIndex = blockId;
ptrA.lineIndex = 0;
ptrA.characterIndex = 0;
}
if (isBottomPointBelowText && !lines.empty())
{
ptrB.pageIndex = pageIndex;
ptrB.blockIndex = blockId;
ptrB.lineIndex = lines.size() - 1;
ptrB.characterIndex = lines.back().getCharacters().size() - 1;
}
// If we have filled the pointers, add them to the selection
if (ptrA.isValid() && ptrB.isValid())
{
if (ptrA < ptrB)
{
selection.addItems({ PDFTextSelectionItem(ptrA, ptrB) }, selectionColor);
}
else
{
selection.addItems({ PDFTextSelectionItem(ptrB, ptrA) }, selectionColor);
}
}
}
// Increment block index
++blockId;
// Apply backward transformation to restore original coordinate system
block.applyTransform(angleMatrix.inverted());
}
selection.build();
return selection;
}
QString PDFTextLayout::getTextFromSelection(PDFTextSelection::iterator itBegin, PDFTextSelection::iterator itEnd, PDFInteger pageIndex) const
{
QStringList text;
if (itBegin != itEnd)
{
PDFTextFlows flows = PDFTextFlow::createTextFlows(*this, PDFTextFlow::RemoveSoftHyphen, pageIndex);
Q_ASSERT(flows.size() < 2);
if (!flows.empty())
{
const PDFTextFlow& textFlow = flows.front();
for (auto it = itBegin; it != itEnd; ++it)
{
text << textFlow.getText(it->start, it->end);
}
}
}
return text.join("\n");
}
QString PDFTextLayout::getTextFromSelection(const PDFTextSelection& selection, PDFInteger pageIndex) const
{
return getTextFromSelection(selection.begin(pageIndex), selection.end(pageIndex), pageIndex);
}
QDataStream& operator>>(QDataStream& stream, PDFTextLayout& layout)
{
stream >> layout.m_characters;
stream >> layout.m_angles;
stream >> layout.m_settings;
stream >> layout.m_blocks;
return stream;
}
QDataStream& operator<<(QDataStream& stream, const PDFTextLayout& layout)
{
stream << layout.m_characters;
stream << layout.m_angles;
stream << layout.m_settings;
stream << layout.m_blocks;
return stream;
}
struct NearestCharacterInfo
{
size_t index = std::numeric_limits<size_t>::max();
PDFReal distance = std::numeric_limits<PDFReal>::infinity();
inline bool operator<(const NearestCharacterInfo& other) const { return distance < other.distance; }
};
void PDFTextLayout::performDoLayout(PDFReal angle)
{
// We will implement variation of 'docstrum' algorithm, we have divided characters by angles,
// for each angle we get characters for that particular angle, and run 'docstrum' algorithm.
// We will do following steps:
// 1) Rotate the plane with characters so that they are all in horizontal line
// 2) Find k-nearest characters for each character (so each character will have
// k pointers to the nearest characters)
// 3) Find text lines. We will do that by creating transitive closure of characters, i.e.
// characters, which are close and are on horizontal line, are marked as in one text line.
// Consider also font size and empty space size between different characters.
// 4) Merge text lines into text blocks using various criteria, such as overlap,
// distance between the lines, and also using again, transitive closure.
// 5) Sort blocks using topological ordering
TextCharacters characters = getCharactersForAngle(angle);
// Step 1) - rotate blocks
QMatrix angleMatrix;
angleMatrix.rotate(angle);
applyTransform(characters, angleMatrix);
// Create spatial index
PDFTextCharacterSpatialIndex spatialIndex(&characters, 16);
for (size_t i = 0, count = characters.size(); i < count; ++i)
{
characters[i].index = i;
}
// Step 2) - find k-nearest characters
const size_t characterCount = characters.size();
const size_t bucketSize = m_settings.samples + 1;
std::vector<NearestCharacterInfo> nearestCharacters(bucketSize * characters.size(), NearestCharacterInfo());
auto findNearestCharacters = [this, bucketSize, &characters, &spatialIndex, &nearestCharacters](size_t currentCharacterIndex)
{
// It will be iterator to the start of the nearest neighbour sequence
auto it = std::next(nearestCharacters.begin(), currentCharacterIndex * bucketSize);
auto itLast = std::next(it, m_settings.samples);
NearestCharacterInfo& insertInfo = *itLast;
QPointF currentPoint = characters[currentCharacterIndex].position;
TextCharacters nearestPointSamples;
spatialIndex.queryNearestEstimate(m_settings.samples, characters[currentCharacterIndex], &nearestPointSamples);
for (size_t i = 0, count = nearestPointSamples.size(); i < count; ++i)
{
if (nearestPointSamples[i].index == currentCharacterIndex)
{
continue;
}
insertInfo.index = nearestPointSamples[i].index;
insertInfo.distance = QLineF(currentPoint, nearestPointSamples[i].position).length();
// Now, use insert sort to sort the array of samples + 1 elements (#samples elements
// are sorted, we use only insert sort on the last element).
auto itLeft = std::prev(itLast);
auto itRight = itLast;
while (true)
{
if (*itRight < *itLeft)
{
std::swap(*itRight, *itLeft);
itRight = itLeft;
if (itLeft == it)
{
// We have reached the end
break;
}
--itLeft;
}
else
{
// We have proper order, break the cycle
break;
}
}
}
};
auto range = PDFIntegerRange<size_t>(0, characterCount);
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Content, range.begin(), range.end(), findNearestCharacters);
// Step 3) - detect lines
PDFUnionFindAlgorithm<size_t> textLinesUF(characterCount);
for (size_t i = 0; i < characterCount; ++i)
{
auto it = std::next(nearestCharacters.begin(), i * bucketSize);
auto itEnd = std::next(it, m_settings.samples);
for (; it != itEnd; ++it)
{
const NearestCharacterInfo& info = *it;
if (info.index == std::numeric_limits<size_t>::max())
{
// We have reached the end - or we do not have enough characters
break;
}
// Criteria:
// 1) Distance of characters is not too large
// 2) Characters are approximately at same line
// 3) Font size of characters are approximately equal
PDFReal fontSizeMax = qMax(characters[i].fontSize, characters[info.index].fontSize);
PDFReal fontSizeMin = qMin(characters[i].fontSize, characters[info.index].fontSize);
if (info.distance < m_settings.distanceSensitivity * characters[i].advance && // 1)
std::fabs(characters[i].position.y() - characters[info.index].position.y()) < fontSizeMin * m_settings.charactersOnLineSensitivity && // 2)
fontSizeMax / fontSizeMin < m_settings.fontSensitivity) // 3)
{
textLinesUF.unify(i, info.index);
}
}
}
std::map<size_t, TextCharacters> lineToCharactersMap;
for (size_t i = 0; i < characterCount; ++i)
{
lineToCharactersMap[textLinesUF.find(i)].push_back(characters[i]);
}
PDFTextLines lines;
lines.reserve(lineToCharactersMap.size());
for (auto& item : lineToCharactersMap)
{
lines.emplace_back(qMove(item.second));
}
// Step 4) - detect text blocks
const size_t lineCount = lines.size();
PDFUnionFindAlgorithm<size_t> textBlocksUF(lineCount);
for (size_t i = 0; i < lineCount; ++i)
{
for (size_t j = i + 1; j < lineCount; ++j)
{
QRectF bb1 = lines[i].getBoundingBox().boundingRect();
QRectF bb2 = lines[j].getBoundingBox().boundingRect();
// Jakub Melka: we will join two blocks, if these two conditions both holds:
// 1) bounding boxes overlap horizontally by large portion
// 2) vertical space between bounding boxes is not too large
QRectF bbUnion = bb1.united(bb2);
const PDFReal height = bbUnion.height();
const PDFReal heightLimit = (bb1.height() + bb2.height()) * m_settings.blockVerticalSensitivity;
const PDFReal overlap = qMax(0.0, bb1.width() + bb2.width() - bbUnion.width());
const PDFReal minimalOverlap = qMin(bb1.width(), bb2.width()) * m_settings.blockOverlapSensitivity;
if (height < heightLimit && overlap > minimalOverlap)
{
textBlocksUF.unify(i, j);
}
}
}
std::map<size_t, PDFTextLines> blockToLines;
for (size_t i = 0; i < lineCount; ++i)
{
blockToLines[textBlocksUF.find(i)].push_back(qMove(lines[i]));
}
PDFTextBlocks blocks;
blocks.reserve(blockToLines.size());
for (auto& item : blockToLines)
{
blocks.emplace_back(qMove(item.second));
}
// 5) Sort block by topological ordering. We will use approache described in paper
// "High Performance Document Layout Analysis", T.M. Breuel, 2003, where are described
// two rules, which are used to determine block precedence.
//
// Rule 1: a<b, if:
// - blocks a,b have overlap in x-axis
// - block a is above block b
//
// Rule 2: a<b, if:
// - block a is entirely on left side of block b
// - there doesn't exist block c, which is between a,b in y-axis
// and moreover, overlaps both a and b in x-axis.
auto isBeforeByRule1 = [&blocks](const size_t aIndex, const size_t bIndex)
{
QRectF aBB = blocks[aIndex].getBoundingBox().boundingRect();
QRectF bBB = blocks[bIndex].getBoundingBox().boundingRect();
const bool isOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(aBB, bBB);
const bool isAoverB = aBB.bottom() > bBB.top();
return isOverlappedOnHorizontalAxis && isAoverB;
};
auto isBeforeByRule2 = [&blocks](const size_t aIndex, const size_t bIndex)
{
QRectF aBB = blocks[aIndex].getBoundingBox().boundingRect();
QRectF bBB = blocks[bIndex].getBoundingBox().boundingRect();
QRectF abBB = aBB.united(bBB);
if (aBB.right() < bBB.left())
{
// Check, if 'c' block doesn't exist
for (size_t i = 0, count = blocks.size(); i < count; ++i)
{
if (i == aIndex || i == bIndex)
{
continue;
}
QRectF cBB = blocks[i].getBoundingBox().boundingRect();
if (cBB.top() >= abBB.top() && cBB.bottom() <= abBB.bottom())
{
const bool isAOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(aBB, cBB);
const bool isBOverlappedOnHorizontalAxis = isRectangleHorizontallyOverlapped(bBB, cBB);
if (isAOverlappedOnHorizontalAxis && isBOverlappedOnHorizontalAxis)
{
return false;
}
}
}
return true;
}
return false;
};
// Order blocks using topological sort (https://en.wikipedia.org/wiki/Topological_sorting,
// Kahn's algorithm is used)
std::set<size_t> workBlocks;
std::vector<size_t> ordering;
std::vector<std::set<size_t>> orderingEdges(blocks.size(), std::set<size_t>());
ordering.reserve(blocks.size());
for (size_t i = 0; i < blocks.size(); ++i)
{
workBlocks.insert(workBlocks.end(), i);
for (size_t j = 0; j < blocks.size(); ++j)
{
if (i != j && (isBeforeByRule1(j, i) || isBeforeByRule2(j, i)))
{
orderingEdges[i].insert(j);
}
}
}
// Topological sort
QMatrix invertedAngleMatrix = angleMatrix.inverted();
while (!workBlocks.empty())
{
auto it = std::min_element(workBlocks.begin(), workBlocks.end(), [&orderingEdges](const size_t l, const size_t r) { return orderingEdges[l].size() < orderingEdges[r].size(); });
ordering.push_back(*it);
for (std::set<size_t>& edges : orderingEdges)
{
edges.erase(*it);
}
blocks[*it].applyTransform(invertedAngleMatrix);
m_blocks.emplace_back(qMove(blocks[*it]));
workBlocks.erase(it);
}
}
TextCharacters PDFTextLayout::getCharactersForAngle(PDFReal angle) const
{
TextCharacters result;
std::copy_if(m_characters.cbegin(), m_characters.cend(), std::back_inserter(result), [angle](const TextCharacter& character) { return character.angle == angle; });
return result;
}
void PDFTextLayout::applyTransform(TextCharacters& characters, const QMatrix& matrix)
{
for (TextCharacter& character : characters)
{
character.position = matrix.map(character.position);
character.boundingBox = matrix.map(character.boundingBox);
}
}
PDFTextLine::PDFTextLine(TextCharacters characters) :
m_characters(qMove(characters))
{
std::sort(m_characters.begin(), m_characters.end(), [](const TextCharacter& l, const TextCharacter& r) { return l.position.x() < r.position.x(); });
QRectF boundingBox;
for (const TextCharacter& character : m_characters)
{
boundingBox = boundingBox.united(character.boundingBox.boundingRect());
}
m_boundingBox.addRect(boundingBox);
m_topLeft = boundingBox.topLeft();
}
PDFReal PDFTextLine::getAngle() const
{
if (!m_characters.empty())
{
return m_characters.front().angle;
}
return 0.0;
}
void PDFTextLine::applyTransform(const QMatrix& matrix)
{
m_boundingBox = matrix.map(m_boundingBox);
m_topLeft = matrix.map(m_topLeft);
for (TextCharacter& character : m_characters)
{
character.applyTransform(matrix);
}
}
QDataStream& operator>>(QDataStream& stream, PDFTextLine& line)
{
stream >> line.m_characters;
stream >> line.m_boundingBox;
stream >> line.m_topLeft;
return stream;
}
QDataStream& operator<<(QDataStream& stream, const PDFTextLine& line)
{
stream << line.m_characters;
stream << line.m_boundingBox;
stream << line.m_topLeft;
return stream;
}
PDFTextBlock::PDFTextBlock(PDFTextLines textLines) :
m_lines(qMove(textLines))
{
auto sortFunction = [](const PDFTextLine& l, const PDFTextLine& r)
{
QRectF bl = l.getBoundingBox().boundingRect();
QRectF br = r.getBoundingBox().boundingRect();
const PDFReal xL = bl.x();
const PDFReal xR = br.x();
const PDFReal yL = qRound(bl.y() * 100.0);
const PDFReal yR = qRound(br.y() * 100.0);
return std::make_pair(-yL, xL) < std::make_pair(-yR, xR);
};
std::sort(m_lines.begin(), m_lines.end(), sortFunction);
QRectF boundingBox;
for (const PDFTextLine& line : m_lines)
{
boundingBox = boundingBox.united(line.getBoundingBox().boundingRect());
}
m_boundingBox.addRect(boundingBox);
m_topLeft = boundingBox.topLeft();
}
PDFReal PDFTextBlock::getAngle() const
{
if (!m_lines.empty())
{
return m_lines.front().getAngle();
}
return 0.0;
}
void PDFTextBlock::applyTransform(const QMatrix& matrix)
{
m_boundingBox = matrix.map(m_boundingBox);
m_topLeft = matrix.map(m_topLeft);
for (PDFTextLine& textLine : m_lines)
{
textLine.applyTransform(matrix);
}
}
QDataStream& operator>>(QDataStream& stream, PDFTextBlock& block)
{
stream >> block.m_lines;
stream >> block.m_boundingBox;
stream >> block.m_topLeft;
return stream;
}
QDataStream& operator<<(QDataStream& stream, const PDFTextBlock& block)
{
stream << block.m_lines;
stream << block.m_boundingBox;
stream << block.m_topLeft;
return stream;
}
void TextCharacter::applyTransform(const QMatrix& matrix)
{
position = matrix.map(position);
boundingBox = matrix.map(boundingBox);
}
QDataStream& operator<<(QDataStream& stream, const TextCharacter& character)
{
stream << character.character;
stream << character.position;
stream << character.angle;
stream << character.fontSize;
stream << character.advance;
stream << character.boundingBox;
return stream;
}
QDataStream& operator>>(QDataStream& stream, TextCharacter& character)
{
stream >> character.character;
stream >> character.position;
stream >> character.angle;
stream >> character.fontSize;
stream >> character.advance;
stream >> character.boundingBox;
return stream;
}
PDFTextLayout PDFTextLayoutStorage::getTextLayout(PDFInteger pageIndex) const
{
PDFTextLayout result;
if (pageIndex >= 0 && pageIndex < static_cast<PDFInteger>(m_offsets.size()))
{
QDataStream layoutStream(const_cast<QByteArray*>(&m_textLayouts), QIODevice::ReadOnly);
layoutStream.skipRawData(m_offsets[pageIndex]);
QByteArray buffer;
layoutStream >> buffer;
buffer = qUncompress(buffer);
QDataStream stream(&buffer, QIODevice::ReadOnly);
stream >> result;
}
return result;
}
void PDFTextLayoutStorage::setTextLayout(PDFInteger pageIndex, const PDFTextLayout& layout, QMutex* mutex)
{
QByteArray result;
{
QDataStream stream(&result, QIODevice::WriteOnly);
stream << layout;
}
result = qCompress(result, 9);
QMutexLocker lock(mutex);
m_offsets[pageIndex] = m_textLayouts.size();
QDataStream layoutStream(&m_textLayouts, QIODevice::Append | QIODevice::WriteOnly);
layoutStream << result;
}
PDFFindResults PDFTextLayoutStorage::find(const QString& text, Qt::CaseSensitivity caseSensitivity, PDFTextFlow::FlowFlags flowFlags) const
{
PDFFindResults results;
QMutex resultsMutex;
auto findImpl = [this, flowFlags, caseSensitivity, &results, &resultsMutex, &text](size_t pageIndex)
{
PDFTextLayout textLayout = getTextLayout(pageIndex);
PDFTextFlows textFlows = PDFTextFlow::createTextFlows(textLayout, flowFlags, pageIndex);
for (const PDFTextFlow& textFlow : textFlows)
{
PDFFindResults flowResults = textFlow.find(text, caseSensitivity);
// Jakub Melka: Do not lock mutex, if we didn't find anything. In that case, just skip to next flow.
if (!flowResults.empty())
{
QMutexLocker lock(&resultsMutex);
results.insert(results.end(), flowResults.begin(), flowResults.end());
}
}
};
auto range = PDFIntegerRange<size_t>(0, m_offsets.size());
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Page, range.begin(), range.end(), findImpl);
std::sort(results.begin(), results.end());
return results;
}
PDFFindResults PDFTextLayoutStorage::find(const QRegularExpression& expression, PDFTextFlow::FlowFlags flowFlags) const
{
PDFFindResults results;
QMutex resultsMutex;
auto findImpl = [this, flowFlags, &results, &resultsMutex, &expression](size_t pageIndex)
{
PDFTextLayout textLayout = getTextLayout(pageIndex);
PDFTextFlows textFlows = PDFTextFlow::createTextFlows(textLayout, flowFlags, pageIndex);
for (const PDFTextFlow& textFlow : textFlows)
{
PDFFindResults flowResults = textFlow.find(expression);
// Jakub Melka: Do not lock mutex, if we didn't find anything. In that case, just skip to next flow.
if (!flowResults.empty())
{
QMutexLocker lock(&resultsMutex);
results.insert(results.end(), flowResults.begin(), flowResults.end());
}
}
};
auto range = PDFIntegerRange<size_t>(0, m_offsets.size());
PDFExecutionPolicy::execute(PDFExecutionPolicy::Scope::Page, range.begin(), range.end(), findImpl);
std::sort(results.begin(), results.end());
return results;
}
QDataStream& operator<<(QDataStream& stream, const PDFTextLayoutSettings& settings)
{
stream << settings.samples;
stream << settings.distanceSensitivity;
stream << settings.charactersOnLineSensitivity;
stream << settings.fontSensitivity;
stream << settings.blockVerticalSensitivity;
stream << settings.blockOverlapSensitivity;
return stream;
}
QDataStream& operator>>(QDataStream& stream, PDFTextLayoutSettings& settings)
{
stream >> settings.samples;
stream >> settings.distanceSensitivity;
stream >> settings.charactersOnLineSensitivity;
stream >> settings.fontSensitivity;
stream >> settings.blockVerticalSensitivity;
stream >> settings.blockOverlapSensitivity;
return stream;
}
void PDFTextSelection::addItems(const PDFTextSelectionItems& items, QColor color)
{
std::transform(items.cbegin(), items.cend(), std::back_inserter(m_items), [color] (const auto& item) { return PDFTextSelectionColoredItem(item.first, item.second, color); });
}
void PDFTextSelection::build()
{
std::sort(m_items.begin(), m_items.end());
}
PDFTextSelection::iterator PDFTextSelection::begin(PDFInteger pageIndex) const
{
Q_ASSERT(std::is_sorted(m_items.cbegin(), m_items.end()));
PDFCharacterPointer pointer;
pointer.pageIndex = pageIndex;
pointer.blockIndex = 0;
pointer.lineIndex = 0;
pointer.characterIndex = 0;
PDFTextSelectionColoredItem item;
item.start = pointer;
item.end = pointer;
return std::lower_bound(m_items.cbegin(), m_items.end(), item);
}
PDFTextSelection::iterator PDFTextSelection::end(PDFInteger pageIndex) const
{
Q_ASSERT(std::is_sorted(m_items.cbegin(), m_items.end()));
PDFCharacterPointer pointer;
pointer.pageIndex = pageIndex;
pointer.blockIndex = std::numeric_limits<decltype(pointer.blockIndex)>::max();
pointer.lineIndex = std::numeric_limits<decltype(pointer.lineIndex)>::max();
pointer.characterIndex = std::numeric_limits<decltype(pointer.characterIndex)>::max();
PDFTextSelectionColoredItem item;
item.start = pointer;
item.end = pointer;
return std::upper_bound(m_items.cbegin(), m_items.end(), item);
}
PDFTextSelection::iterator PDFTextSelection::nextPageRange(iterator currentPageRange) const
{
auto it = currentPageRange;
while (it != m_items.cend() && it->start.pageIndex == currentPageRange->start.pageIndex)
{
++it;
}
return it;
}
PDFFindResults PDFTextFlow::find(const QString& text, Qt::CaseSensitivity caseSensitivity) const
{
PDFFindResults results;
int index = m_text.indexOf(text, 0, caseSensitivity);
while (index != -1)
{
PDFFindResult result;
result.matched = text;
result.textSelectionItems = getTextSelectionItems(index, text.length());
result.context = getContext(index, text.length());
if (!result.textSelectionItems.empty())
{
results.emplace_back(qMove(result));
}
index = m_text.indexOf(text, index + 1, caseSensitivity);
}
return results;
}
PDFFindResults PDFTextFlow::find(const QRegularExpression& expression) const
{
PDFFindResults results;
QRegularExpressionMatchIterator iterator = expression.globalMatch(m_text, 0, QRegularExpression::NormalMatch, QRegularExpression::NoMatchOption);
while (iterator.hasNext())
{
QRegularExpressionMatch match = iterator.next();
Q_ASSERT(match.hasMatch());
const int index = match.capturedStart();
const int length = match.capturedLength();
PDFFindResult result;
result.matched = match.captured();
result.textSelectionItems = getTextSelectionItems(index, length);
result.context = getContext(index, length);
if (!result.textSelectionItems.empty())
{
results.emplace_back(qMove(result));
}
}
return results;
}
QString PDFTextFlow::getText(const PDFCharacterPointer& begin, const PDFCharacterPointer& end) const
{
auto it = std::find(m_characterPointers.cbegin(), m_characterPointers.cend(), begin);
auto itEnd = std::find(m_characterPointers.cbegin(), m_characterPointers.cend(), end);
const std::size_t startIndex = std::distance(m_characterPointers.cbegin(), it);
const std::size_t endIndex = std::distance(m_characterPointers.cbegin(), itEnd);
if (startIndex <= endIndex)
{
return m_text.mid(int(startIndex), int(endIndex - startIndex + 1));
}
return QString();
}
void PDFTextFlow::merge(const PDFTextFlow& next)
{
m_text += next.m_text;
m_boundingBox = m_boundingBox.united(next.m_boundingBox);
m_characterPointers.insert(m_characterPointers.end(), next.m_characterPointers.cbegin(), next.m_characterPointers.cend());
m_characterBoundingBoxes.insert(m_characterBoundingBoxes.end(), next.m_characterBoundingBoxes.cbegin(), next.m_characterBoundingBoxes.cend());
}
PDFTextFlows PDFTextFlow::createTextFlows(const PDFTextLayout& layout, FlowFlags flags, PDFInteger pageIndex)
{
PDFTextFlows result;
if (!flags.testFlag(SeparateBlocks))
{
result.emplace_back();
}
QString lineBreak(" ");
if (flags.testFlag(AddLineBreaks))
{
#if defined(Q_OS_WIN)
lineBreak = QString("\r\n");
#elif defined(Q_OS_UNIX)
lineBreak = QString("\n");
#elif defined(Q_OS_MAC)
lineBreak = QString("\r");
#else
static_assert(false, "Fix this code!");
#endif
}
size_t textBlockIndex = 0;
for (const PDFTextBlock& textBlock : layout.getTextBlocks())
{
PDFTextFlow currentFlow;
currentFlow.m_boundingBox = textBlock.getBoundingBox().controlPointRect();
size_t textLineIndex = 0;
for (const PDFTextLine& textLine : textBlock.getLines())
{
const TextCharacters& characters = textLine.getCharacters();
for (size_t i = 0, characterCount = characters.size(); i < characterCount; ++i)
{
const TextCharacter& currentCharacter = characters[i];
if (i > 0 && !currentCharacter.character.isSpace())
{
// Jakub Melka: try to guess space between letters
const TextCharacter& previousCharacter = characters[i - 1];
if (!previousCharacter.character.isSpace() && QLineF(previousCharacter.position, currentCharacter.position).length() > previousCharacter.advance * 1.2)
{
currentFlow.m_text += QChar(' ');
currentFlow.m_characterPointers.emplace_back();
currentFlow.m_characterBoundingBoxes.emplace_back();
}
}
currentFlow.m_text += currentCharacter.character;
PDFCharacterPointer pointer;
pointer.pageIndex = pageIndex;
pointer.blockIndex = textBlockIndex;
pointer.lineIndex = textLineIndex;
pointer.characterIndex = i;
currentFlow.m_characterPointers.emplace_back(qMove(pointer));
currentFlow.m_characterBoundingBoxes.emplace_back(currentCharacter.boundingBox.controlPointRect());
}
// Remove soft hyphen, if it is enabled
if (flags.testFlag(RemoveSoftHyphen) && !characters.empty() && currentFlow.m_text.back() == QChar(QChar::SoftHyphen))
{
currentFlow.m_text.chop(1);
currentFlow.m_characterPointers.pop_back();
currentFlow.m_characterBoundingBoxes.pop_back();
if (!flags.testFlag(AddLineBreaks))
{
// Do not add single empty space - because soft hypen probably breaks a word
++textLineIndex;
continue;
}
}
// Add line break
currentFlow.m_text += lineBreak;
currentFlow.m_characterPointers.insert(currentFlow.m_characterPointers.end(), lineBreak.length(), PDFCharacterPointer());
currentFlow.m_characterBoundingBoxes.insert(currentFlow.m_characterBoundingBoxes.end(), lineBreak.length(), QRectF());
++textLineIndex;
}
// If we are producing separate blocks, then make flow for each
// text block, otherwise join flows.
if (flags.testFlag(SeparateBlocks))
{
result.emplace_back(qMove(currentFlow));
}
else
{
result.back().merge(currentFlow);
}
++textBlockIndex;
}
return result;
}
PDFTextSelectionItems PDFTextFlow::getTextSelectionItems(size_t index, size_t length) const
{
PDFTextSelectionItems items;
auto it = std::next(m_characterPointers.cbegin(), index);
auto itEnd = std::next(m_characterPointers.cbegin(), index + length);
while (it != itEnd)
{
// Skip invalid items, find first valid
if (!it->isValid())
{
++it;
continue;
}
auto itSelectionStart = it;
while (it != itEnd && it->isValid() && it->hasSameBlock(*itSelectionStart))
{
++it;
}
auto itSelectionEnd = std::prev(it);
items.emplace_back(*itSelectionStart, *itSelectionEnd);
}
std::sort(items.begin(), items.end());
return items;
}
QString PDFTextFlow::getContext(size_t index, size_t length) const
{
Q_ASSERT(length > 0);
const PDFCharacterPointer& frontComparatorItem = m_characterPointers[index];
while (index > 0 && (m_characterPointers[index - 1].hasSameLine(frontComparatorItem) || !m_characterPointers[index - 1].isValid()))
{
--index;
++length;
}
size_t currentEnd = index + length - 1;
size_t last = m_characterPointers.size() - 1;
const PDFCharacterPointer& backComparatorItem = m_characterPointers[currentEnd];
while (currentEnd < last && (m_characterPointers[currentEnd + 1].hasSameLine(backComparatorItem) || !m_characterPointers[currentEnd + 1].isValid()))
{
++currentEnd;
++length;
}
return m_text.mid(int(index), int(length)).trimmed();
}
bool PDFCharacterPointer::hasSameBlock(const PDFCharacterPointer& other) const
{
return pageIndex == other.pageIndex && blockIndex == other.blockIndex;
}
bool PDFCharacterPointer::hasSameLine(const PDFCharacterPointer& other) const
{
return hasSameBlock(other) && lineIndex == other.lineIndex;
}
bool PDFFindResult::operator<(const PDFFindResult& other) const
{
Q_ASSERT(!textSelectionItems.empty());
Q_ASSERT(!other.textSelectionItems.empty());
return textSelectionItems.front() < other.textSelectionItems.front();
}
PDFTextLayout PDFTextLayoutStorageGetter::getTextLayoutImpl() const
{
return m_storage ? m_storage->getTextLayout(m_pageIndex) : PDFTextLayout();
}
void PDFTextSelectionPainter::draw(QPainter* painter, PDFInteger pageIndex, PDFTextLayoutGetter& textLayoutGetter, const QMatrix& matrix)
{
Q_ASSERT(painter);
auto it = m_selection->begin(pageIndex);
auto itEnd = m_selection->end(pageIndex);
if (it == itEnd)
{
// Jakub Melka: no text is selected on current page; do nothing
return;
}
painter->save();
const PDFTextLayout& layout = textLayoutGetter;
const PDFTextBlocks& blocks = layout.getTextBlocks();
for (; it != itEnd; ++it)
{
const PDFTextSelectionColoredItem& item = *it;
const PDFCharacterPointer& start = item.start;
const PDFCharacterPointer& end = item.end;
Q_ASSERT(start.pageIndex == end.pageIndex);
Q_ASSERT(start.blockIndex == end.blockIndex);
if (start.blockIndex >= blocks.size())
{
// Selection is invalid, do nothing
continue;
}
PDFTextBlock block = blocks[start.blockIndex];
// Fix angle of block, so we will get correct selection rectangles (parallel to lines)
QMatrix angleMatrix;
angleMatrix.rotate(block.getAngle());
block.applyTransform(angleMatrix);
QPainterPath path;
const size_t lineStart = start.lineIndex;
const size_t lineEnd = end.lineIndex;
Q_ASSERT(lineEnd >= lineStart);
const PDFTextLines& lines = block.getLines();
for (size_t lineIndex = lineStart; lineIndex <= lineEnd; ++lineIndex)
{
if (lineIndex >= lines.size())
{
// Selection is invalid, do nothing
continue;
}
const PDFTextLine& line = lines[lineIndex];
const TextCharacters& characters = line.getCharacters();
if (characters.empty())
{
// Selection is invalid, do nothing
continue;
}
// First determine, which characters will be selected
size_t characterStart = 0;
size_t characterEnd = characters.size() - 1;
if (lineIndex == lineStart)
{
characterStart = start.characterIndex;
}
if (lineIndex == lineEnd)
{
characterEnd = end.characterIndex;
}
// Validate indices, then calculate bounding box
if (!(characterStart <= characterEnd && characterEnd < characters.size()))
{
continue;
}
QRectF boundingBox;
for (size_t i = characterStart; i <= characterEnd; ++i)
{
boundingBox = boundingBox.united(characters[i].boundingBox.boundingRect());
}
if (boundingBox.isValid())
{
// Enlarge height by some percent
PDFReal heightAdvance = boundingBox.height() * HEIGHT_INCREASE_FACTOR * 0.5;
boundingBox.adjust(0, -heightAdvance, 0, heightAdvance);
path.addRect(boundingBox);
}
}
QMatrix transformMatrix = angleMatrix.inverted() * matrix;
path = transformMatrix.map(path);
QColor penColor = item.color.darker();
QColor brushColor = item.color;
brushColor.setAlphaF(SELECTION_ALPHA);
painter->setPen(penColor);
painter->setBrush(QBrush(brushColor, Qt::SolidPattern));
painter->drawPath(path);
}
painter->restore();
}
QPainterPath PDFTextSelectionPainter::prepareGeometry(PDFInteger pageIndex, PDFTextLayoutGetter& textLayoutGetter, const QMatrix& matrix, QPolygonF* quadrilaterals)
{
QPainterPath path;
auto it = m_selection->begin(pageIndex);
auto itEnd = m_selection->end(pageIndex);
if (it == itEnd)
{
// Jakub Melka: no text is selected on current page; do nothing
return path;
}
const PDFTextLayout& layout = textLayoutGetter;
const PDFTextBlocks& blocks = layout.getTextBlocks();
for (; it != itEnd; ++it)
{
const PDFTextSelectionColoredItem& item = *it;
const PDFCharacterPointer& start = item.start;
const PDFCharacterPointer& end = item.end;
Q_ASSERT(start.pageIndex == end.pageIndex);
Q_ASSERT(start.blockIndex == end.blockIndex);
if (start.blockIndex >= blocks.size())
{
// Selection is invalid, do nothing
continue;
}
PDFTextBlock block = blocks[start.blockIndex];
// Fix angle of block, so we will get correct selection rectangles (parallel to lines)
QMatrix angleMatrix;
angleMatrix.rotate(block.getAngle());
block.applyTransform(angleMatrix);
QPainterPath currentPath;
QPolygonF currentPolygon;
const size_t lineStart = start.lineIndex;
const size_t lineEnd = end.lineIndex;
Q_ASSERT(lineEnd >= lineStart);
const PDFTextLines& lines = block.getLines();
for (size_t lineIndex = lineStart; lineIndex <= lineEnd; ++lineIndex)
{
if (lineIndex >= lines.size())
{
// Selection is invalid, do nothing
continue;
}
const PDFTextLine& line = lines[lineIndex];
const TextCharacters& characters = line.getCharacters();
if (characters.empty())
{
// Selection is invalid, do nothing
continue;
}
// First determine, which characters will be selected
size_t characterStart = 0;
size_t characterEnd = characters.size() - 1;
if (lineIndex == lineStart)
{
characterStart = start.characterIndex;
}
if (lineIndex == lineEnd)
{
characterEnd = end.characterIndex;
}
// Validate indices, then calculate bounding box
if (!(characterStart <= characterEnd && characterEnd < characters.size()))
{
continue;
}
QRectF boundingBox;
for (size_t i = characterStart; i <= characterEnd; ++i)
{
boundingBox = boundingBox.united(characters[i].boundingBox.boundingRect());
}
if (boundingBox.isValid())
{
// Enlarge height by some percent
PDFReal heightAdvance = boundingBox.height() * HEIGHT_INCREASE_FACTOR * 0.5;
boundingBox.adjust(0, -heightAdvance, 0, heightAdvance);
currentPath.addRect(boundingBox);
if (quadrilaterals)
{
currentPolygon.append({ boundingBox.topLeft(), boundingBox.topRight(), boundingBox.bottomLeft(), boundingBox.bottomRight() });
}
}
}
QMatrix transformMatrix = angleMatrix.inverted() * matrix;
currentPath = transformMatrix.map(currentPath);
if (quadrilaterals)
{
currentPolygon = transformMatrix.map(currentPolygon);
quadrilaterals->append(currentPolygon);
}
path.addPath(currentPath);
}
return path;
}
PDFTextLayoutCache::PDFTextLayoutCache(std::function<PDFTextLayout (PDFInteger)> textLayoutGetter) :
m_textLayoutGetter(qMove(textLayoutGetter)),
m_pageIndex(-1),
m_layout()
{
}
void PDFTextLayoutCache::clear()
{
m_pageIndex = -1;
m_layout = PDFTextLayout();
}
const PDFTextLayout& PDFTextLayoutCache::getTextLayout(PDFInteger pageIndex)
{
if (m_pageIndex != pageIndex)
{
m_pageIndex = pageIndex;
m_layout = m_textLayoutGetter(pageIndex);
}
return m_layout;
}
} // namespace pdf