mirror of
https://github.com/JakubMelka/PDF4QT.git
synced 2025-01-30 17:14:50 +01:00
475 lines
18 KiB
C++
475 lines
18 KiB
C++
// Copyright (C) 2019 Jakub Melka
|
|
//
|
|
// This file is part of PdfForQt.
|
|
//
|
|
// PdfForQt is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// PdfForQt is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with PDFForQt. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
#include "pdfpattern.h"
|
|
#include "pdfdocument.h"
|
|
#include "pdfexception.h"
|
|
#include "pdfutils.h"
|
|
#include "pdfcolorspaces.h"
|
|
|
|
#include <QPainter>
|
|
|
|
namespace pdf
|
|
{
|
|
|
|
PatternType PDFShadingPattern::getType() const
|
|
{
|
|
return PatternType::Shading;
|
|
}
|
|
|
|
ShadingType PDFAxialShading::getShadingType() const
|
|
{
|
|
return ShadingType::Axial;
|
|
}
|
|
|
|
PDFPatternPtr PDFPattern::createPattern(const PDFDictionary* colorSpaceDictionary, const PDFDocument* document, const PDFObject& object)
|
|
{
|
|
const PDFObject& dereferencedObject = document->getObject(object);
|
|
if (dereferencedObject.isDictionary())
|
|
{
|
|
PDFPatternPtr result;
|
|
|
|
const PDFDictionary* patternDictionary = dereferencedObject.getDictionary();
|
|
PDFDocumentDataLoaderDecorator loader(document);
|
|
|
|
if (loader.readNameFromDictionary(patternDictionary, "Type") != "Pattern")
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
|
|
}
|
|
|
|
const PatternType patternType = static_cast<PatternType>(loader.readIntegerFromDictionary(patternDictionary, "PatternType", static_cast<PDFInteger>(PatternType::Invalid)));
|
|
switch (patternType)
|
|
{
|
|
case PatternType::Tiling:
|
|
{
|
|
// TODO: Implement tiling pattern
|
|
throw PDFParserException(PDFTranslationContext::tr("Tiling pattern not implemented."));
|
|
break;
|
|
}
|
|
|
|
case PatternType::Shading:
|
|
{
|
|
PDFObject patternGraphicState = document->getObject(patternDictionary->get("ExtGState"));
|
|
QMatrix matrix = loader.readMatrixFromDictionary(patternDictionary, "Matrix", QMatrix());
|
|
return createShadingPattern(colorSpaceDictionary, document, patternDictionary->get("Shading"), matrix, patternGraphicState, false);
|
|
}
|
|
|
|
default:
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid pattern."));
|
|
return PDFPatternPtr();
|
|
}
|
|
|
|
PDFPatternPtr PDFPattern::createShadingPattern(const PDFDictionary* colorSpaceDictionary,
|
|
const PDFDocument* document,
|
|
const PDFObject& shadingObject,
|
|
const QMatrix& matrix,
|
|
const PDFObject& patternGraphicState,
|
|
bool ignoreBackgroundColor)
|
|
{
|
|
const PDFObject& dereferencedShadingObject = document->getObject(shadingObject);
|
|
if (!dereferencedShadingObject.isDictionary())
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid shading."));
|
|
}
|
|
|
|
PDFDocumentDataLoaderDecorator loader(document);
|
|
const PDFDictionary* shadingDictionary = dereferencedShadingObject.getDictionary();
|
|
|
|
// Parse common data for all shadings
|
|
PDFColorSpacePointer colorSpace = PDFAbstractColorSpace::createColorSpace(colorSpaceDictionary, document, shadingDictionary->get("ColorSpace"));
|
|
QColor backgroundColor;
|
|
if (!ignoreBackgroundColor)
|
|
{
|
|
std::vector<PDFReal> backgroundColorValues = loader.readNumberArrayFromDictionary(shadingDictionary, "Background");
|
|
if (!backgroundColorValues.empty())
|
|
{
|
|
backgroundColor = colorSpace->getCheckedColor(PDFAbstractColorSpace::convertToColor(backgroundColorValues));
|
|
}
|
|
}
|
|
QRectF boundingBox = loader.readRectangle(shadingDictionary->get("BBox"), QRectF());
|
|
bool antialias = loader.readBooleanFromDictionary(shadingDictionary, "AntiAlias", false);
|
|
const PDFObject& extendObject = document->getObject(shadingDictionary->get("Extend"));
|
|
bool extendStart = false;
|
|
bool extendEnd = false;
|
|
if (extendObject.isArray())
|
|
{
|
|
const PDFArray* array = extendObject.getArray();
|
|
if (array->getCount() != 2)
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern extends. Expected 2, but %1 provided.").arg(array->getCount()));
|
|
}
|
|
|
|
extendStart = loader.readBoolean(array->getItem(0), false);
|
|
extendEnd = loader.readBoolean(array->getItem(1), false);
|
|
}
|
|
std::vector<PDFFunctionPtr> functions;
|
|
const PDFObject& functionsObject = document->getObject(shadingDictionary->get("Function"));
|
|
if (functionsObject.isArray())
|
|
{
|
|
const PDFArray* functionsArray = functionsObject.getArray();
|
|
functions.reserve(functionsArray->getCount());
|
|
for (size_t i = 0, functionCount = functionsArray->getCount(); i < functionCount; ++i)
|
|
{
|
|
functions.push_back(PDFFunction::createFunction(document, functionsArray->getItem(i)));
|
|
}
|
|
}
|
|
else if (!functionsObject.isNull())
|
|
{
|
|
functions.push_back(PDFFunction::createFunction(document, functionsObject));
|
|
}
|
|
|
|
const ShadingType shadingType = static_cast<ShadingType>(loader.readIntegerFromDictionary(shadingDictionary, "ShadingType", static_cast<PDFInteger>(ShadingType::Invalid)));
|
|
switch (shadingType)
|
|
{
|
|
case ShadingType::Axial:
|
|
{
|
|
PDFAxialShading* axialShading = new PDFAxialShading();
|
|
PDFPatternPtr result(axialShading);
|
|
|
|
std::vector<PDFReal> coordinates = loader.readNumberArrayFromDictionary(shadingDictionary, "Coords");
|
|
if (coordinates.size() != 4)
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern coordinates. Expected 4, but %1 provided.").arg(coordinates.size()));
|
|
}
|
|
|
|
std::vector<PDFReal> domain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain");
|
|
if (domain.empty())
|
|
{
|
|
domain = { 0.0, 1.0 };
|
|
}
|
|
if (domain.size() != 2)
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern domain. Expected 2, but %1 provided.").arg(domain.size()));
|
|
}
|
|
|
|
// Load items for axial shading
|
|
axialShading->m_antiAlias = antialias;
|
|
axialShading->m_backgroundColor = backgroundColor;
|
|
axialShading->m_colorSpace = colorSpace;
|
|
axialShading->m_boundingBox = boundingBox;
|
|
axialShading->m_domainStart = domain[0];
|
|
axialShading->m_domainEnd = domain[1];
|
|
axialShading->m_startPoint = QPointF(coordinates[0], coordinates[1]);
|
|
axialShading->m_endPoint = QPointF(coordinates[2], coordinates[3]);
|
|
axialShading->m_extendStart = extendStart;
|
|
axialShading->m_extendEnd = extendEnd;
|
|
axialShading->m_functions = qMove(functions);
|
|
axialShading->m_matrix = matrix;
|
|
axialShading->m_patternGraphicState = patternGraphicState;
|
|
|
|
return result;
|
|
}
|
|
|
|
default:
|
|
{
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern type (%1).").arg(static_cast<PDFInteger>(shadingType)));
|
|
}
|
|
}
|
|
|
|
throw PDFParserException(PDFTranslationContext::tr("Invalid shading."));
|
|
return PDFPatternPtr();
|
|
}
|
|
|
|
PDFMesh PDFAxialShading::createMesh(const PDFMeshQualitySettings& settings) const
|
|
{
|
|
PDFMesh mesh;
|
|
|
|
QPointF p1 = settings.userSpaceToDeviceSpaceMatrix.map(m_startPoint);
|
|
QPointF p2 = settings.userSpaceToDeviceSpaceMatrix.map(m_endPoint);
|
|
|
|
// Strategy: for simplification, we rotate the line clockwise so we will
|
|
// get the shading axis equal to the x-axis. Then we will determine the shading
|
|
// area and create mesh according the settings.
|
|
QLineF line(p1, p2);
|
|
const double angle = line.angleTo(QLineF(0, 0, 1, 0));
|
|
|
|
// Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms
|
|
// points on the line to the global coordinate system. So, point (0, 0) will
|
|
// map onto p1 and point (length(p1-p2), 0) will map onto p2.
|
|
QMatrix p1p2LCS;
|
|
p1p2LCS.translate(p1.x(), p1.y());
|
|
p1p2LCS.rotate(angle);
|
|
QMatrix p1p2GCS = p1p2LCS.inverted();
|
|
|
|
QPointF p1m = p1p2GCS.map(p1);
|
|
QPointF p2m = p1p2GCS.map(p2);
|
|
|
|
Q_ASSERT(isZero(p1m.y()));
|
|
Q_ASSERT(isZero(p2m.y()));
|
|
Q_ASSERT(p1m.x() <= p2m.x());
|
|
|
|
QPainterPath meshingArea;
|
|
meshingArea.addPolygon(p1p2GCS.map(settings.deviceSpaceMeshingArea));
|
|
meshingArea.addRect(p1m.x(), p1m.y() - settings.preferredMeshResolution * 0.5, p2m.x() - p1m.x(), settings.preferredMeshResolution);
|
|
QRectF meshingRectangle = meshingArea.boundingRect();
|
|
|
|
PDFReal xl = meshingRectangle.left();
|
|
PDFReal xr = meshingRectangle.right();
|
|
PDFReal yt = meshingRectangle.top();
|
|
PDFReal yb = meshingRectangle.bottom();
|
|
|
|
// Create coordinate array filled with stops, where we will determine the color
|
|
std::vector<PDFReal> xCoords;
|
|
xCoords.reserve((xr - xl) / settings.minimalMeshResolution + 3);
|
|
xCoords.push_back(xl);
|
|
for (PDFReal x = p1m.x(); x <= p2m.x(); x += settings.minimalMeshResolution)
|
|
{
|
|
if (!qFuzzyCompare(xCoords.back(), x))
|
|
{
|
|
xCoords.push_back(x);
|
|
}
|
|
}
|
|
|
|
if (xCoords.back() + PDF_EPSILON < p2m.x())
|
|
{
|
|
xCoords.push_back(p2m.x());
|
|
}
|
|
|
|
if (!qFuzzyCompare(xCoords.back(), xr))
|
|
{
|
|
xCoords.push_back(xr);
|
|
}
|
|
|
|
const PDFReal tAtStart = m_domainStart;
|
|
const PDFReal tAtEnd = m_domainEnd;
|
|
const PDFReal tMin = qMin(tAtStart, tAtEnd);
|
|
const PDFReal tMax = qMax(tAtStart, tAtEnd);
|
|
|
|
const bool isSingleFunction = m_functions.size() == 1;
|
|
std::vector<PDFReal> colorBuffer(m_colorSpace->getColorComponentCount(), 0.0);
|
|
auto getColor = [this, isSingleFunction, &colorBuffer](PDFReal t) -> PDFColor
|
|
{
|
|
if (isSingleFunction)
|
|
{
|
|
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size());
|
|
if (!result)
|
|
{
|
|
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0, count = colorBuffer.size(); i < count; ++i)
|
|
{
|
|
PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1);
|
|
if (!result)
|
|
{
|
|
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage));
|
|
}
|
|
}
|
|
}
|
|
|
|
return PDFAbstractColorSpace::convertToColor(colorBuffer);
|
|
};
|
|
|
|
// Determine color of each coordinate
|
|
std::vector<std::pair<PDFReal, PDFColor>> coloredCoordinates;
|
|
coloredCoordinates.reserve(xCoords.size());
|
|
|
|
for (PDFReal x : xCoords)
|
|
{
|
|
if (x < p1m.x() - PDF_EPSILON && !m_extendStart)
|
|
{
|
|
// Move to the next coordinate, this is skipped
|
|
continue;
|
|
}
|
|
|
|
if (x > p2m.x() + PDF_EPSILON && !m_extendEnd)
|
|
{
|
|
// We are finished no more triangles will occur
|
|
break;
|
|
}
|
|
|
|
// Determine current parameter t
|
|
const PDFReal t = interpolate(x, p1m.x(), p2m.x(), tAtStart, tAtEnd);
|
|
const PDFReal tBounded = qBound(tMin, t, tMax);
|
|
const PDFColor color = getColor(tBounded);
|
|
coloredCoordinates.emplace_back(x, color);
|
|
}
|
|
|
|
// Filter coordinates according the meshing criteria
|
|
std::vector<std::pair<PDFReal, PDFColor>> filteredCoordinates;
|
|
filteredCoordinates.reserve(coloredCoordinates.size());
|
|
|
|
for (auto it = coloredCoordinates.cbegin(); it != coloredCoordinates.cend(); ++it)
|
|
{
|
|
// We will skip this coordinate, if both of meshing criteria have been met:
|
|
// 1) Color difference is small (lesser than tolerance)
|
|
// 2) Distance from previous and next point is less than preffered meshing resolution OR colors are equal
|
|
|
|
if (it != coloredCoordinates.cbegin() && std::next(it) != coloredCoordinates.cend())
|
|
{
|
|
auto itNext = std::next(it);
|
|
|
|
const std::pair<PDFReal, PDFColor>& prevItem = filteredCoordinates.back();
|
|
const std::pair<PDFReal, PDFColor>& currentItem = *it;
|
|
const std::pair<PDFReal, PDFColor>& nextItem = *itNext;
|
|
|
|
if (currentItem.first != p1m.x() && currentItem.first != p2m.x())
|
|
{
|
|
if (prevItem.second == currentItem.second && currentItem.second == nextItem.second)
|
|
{
|
|
// Colors are same, skip the test
|
|
continue;
|
|
}
|
|
|
|
if (PDFAbstractColorSpace::isColorEqual(prevItem.second, currentItem.second, settings.tolerance) &&
|
|
PDFAbstractColorSpace::isColorEqual(currentItem.second, nextItem.second, settings.tolerance) &&
|
|
PDFAbstractColorSpace::isColorEqual(prevItem.second, nextItem.second, settings.tolerance) &&
|
|
(nextItem.first - prevItem.first < settings.preferredMeshResolution))
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
filteredCoordinates.push_back(*it);
|
|
}
|
|
|
|
if (!filteredCoordinates.empty())
|
|
{
|
|
size_t vertexCount = filteredCoordinates.size() * 2;
|
|
size_t triangleCount = filteredCoordinates.size() * 2 - 2;
|
|
|
|
if (m_backgroundColor.isValid())
|
|
{
|
|
vertexCount += 8;
|
|
triangleCount += 4;
|
|
}
|
|
mesh.reserve(vertexCount, triangleCount);
|
|
|
|
PDFColor previousColor = filteredCoordinates.front().second;
|
|
uint32_t topLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yt));
|
|
uint32_t bottomLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yb));
|
|
for (auto it = std::next(filteredCoordinates.cbegin()); it != filteredCoordinates.cend(); ++it)
|
|
{
|
|
const std::pair<PDFReal, PDFColor>& item = *it;
|
|
|
|
uint32_t topRight = mesh.addVertex(QPointF(item.first, yt));
|
|
uint32_t bottomRight = mesh.addVertex(QPointF(item.first, yb));
|
|
|
|
PDFColor mixedColor = PDFAbstractColorSpace::mixColors(previousColor, item.second, 0.5);
|
|
QColor color = m_colorSpace->getColor(mixedColor);
|
|
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, color.rgb());
|
|
|
|
topLeft = topRight;
|
|
bottomLeft = bottomRight;
|
|
previousColor = item.second;
|
|
}
|
|
}
|
|
|
|
// Create background color triangles
|
|
if (m_backgroundColor.isValid() && (!m_extendStart || !m_extendEnd))
|
|
{
|
|
if (!m_extendStart && xl + PDF_EPSILON < p1m.x())
|
|
{
|
|
uint32_t topLeft = mesh.addVertex(QPointF(xl, yt));
|
|
uint32_t topRight = mesh.addVertex(QPointF(p1m.x(), yt));
|
|
uint32_t bottomLeft = mesh.addVertex(QPointF(xl, yb));
|
|
uint32_t bottomRight = mesh.addVertex(QPointF(p1m.x(), yb));
|
|
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
|
|
}
|
|
|
|
if (!m_extendEnd && p2m.x() + PDF_EPSILON < xr)
|
|
{
|
|
uint32_t topRight = mesh.addVertex(QPointF(xr, yt));
|
|
uint32_t topLeft = mesh.addVertex(QPointF(p2m.x(), yt));
|
|
uint32_t bottomRight = mesh.addVertex(QPointF(xr, yb));
|
|
uint32_t bottomLeft = mesh.addVertex(QPointF(p2m.x(), yb));
|
|
mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, m_backgroundColor.rgb());
|
|
}
|
|
}
|
|
|
|
// Transform mesh to the device space coordinates
|
|
mesh.transform(p1p2LCS);
|
|
|
|
// Create bounding path
|
|
if (m_boundingBox.isValid())
|
|
{
|
|
QPainterPath boundingPath;
|
|
boundingPath.addPolygon(settings.userSpaceToDeviceSpaceMatrix.map(m_boundingBox));
|
|
mesh.setBoundingPath(boundingPath);
|
|
}
|
|
|
|
return mesh;
|
|
}
|
|
|
|
void PDFMesh::paint(QPainter* painter) const
|
|
{
|
|
if (m_triangles.empty())
|
|
{
|
|
return;
|
|
}
|
|
|
|
painter->save();
|
|
painter->setPen(Qt::NoPen);
|
|
painter->setRenderHint(QPainter::Antialiasing, true);
|
|
|
|
// Set the clipping area, if we have it
|
|
if (!m_boundingPath.isEmpty())
|
|
{
|
|
painter->setClipPath(m_boundingPath, Qt::IntersectClip);
|
|
}
|
|
|
|
QColor color;
|
|
|
|
// Draw all triangles
|
|
for (const Triangle& triangle : m_triangles)
|
|
{
|
|
if (color != triangle.color)
|
|
{
|
|
painter->setPen(QColor(triangle.color));
|
|
painter->setBrush(QBrush(triangle.color, Qt::SolidPattern));
|
|
color = triangle.color;
|
|
}
|
|
|
|
std::array<QPointF, 3> triangleCorners = { m_vertices[triangle.v1], m_vertices[triangle.v2], m_vertices[triangle.v3] };
|
|
painter->drawConvexPolygon(triangleCorners.data(), static_cast<int>(triangleCorners.size()));
|
|
}
|
|
|
|
painter->restore();
|
|
}
|
|
|
|
void PDFMesh::transform(const QMatrix& matrix)
|
|
{
|
|
for (QPointF& vertex : m_vertices)
|
|
{
|
|
vertex = matrix.map(vertex);
|
|
}
|
|
|
|
m_boundingPath = matrix.map(m_boundingPath);
|
|
}
|
|
|
|
void PDFMeshQualitySettings::initDefaultResolution()
|
|
{
|
|
// We will take 0.5% percent of device space meshing area as minimal resolution (it is ~1.5 mm for
|
|
// A4 page) and default resolution 4x number of that.
|
|
|
|
Q_ASSERT(deviceSpaceMeshingArea.isValid());
|
|
PDFReal size = qMax(deviceSpaceMeshingArea.width(), deviceSpaceMeshingArea.height());
|
|
minimalMeshResolution = size * 0.005;
|
|
preferredMeshResolution = minimalMeshResolution * 4;
|
|
}
|
|
|
|
} // namespace pdf
|