PDF4QT/Pdf4QtLib/sources/pdfparser.cpp

980 lines
32 KiB
C++

// Copyright (C) 2018-2022 Jakub Melka
//
// This file is part of PDF4QT.
//
// PDF4QT is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// with the written consent of the copyright owner, any later version.
//
// PDF4QT is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PDF4QT. If not, see <https://www.gnu.org/licenses/>.
#include "pdfparser.h"
#include "pdfconstants.h"
#include "pdfexception.h"
#include "pdfdbgheap.h"
#include <QFile>
#include <QThread>
#include <cctype>
#include <memory>
namespace pdf
{
PDFLexicalAnalyzer::PDFLexicalAnalyzer(const char* begin, const char* end) :
m_begin(begin),
m_current(begin),
m_end(end),
m_tokenizingPostScriptFunction(false)
{
}
PDFLexicalAnalyzer::Token PDFLexicalAnalyzer::fetch()
{
// Skip whitespace/comments at first
skipWhitespaceAndComments();
// If we are at end of token, then return immediately
if (isAtEnd())
{
return Token(TokenType::EndOfFile);
}
switch (lookChar())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '+':
case '-':
case '.':
{
// Scan integer or real number. If integer overflows, then it is converted to the real number. If
// real number overflow, then error is reported. This behaviour is according to the PDF 1.7 specification,
// chapter 3.2.2.
// First, treat special characters
bool positive = fetchChar('+');
bool negative = fetchChar('-');
bool dot = fetchChar('.');
bool treatAsReal = dot;
bool atLeastOneDigit = false;
if (isAtEnd())
{
error(tr("Expected a number, but end of stream reached."));
}
PDFInteger integer = 0;
PDFReal real = 0.0;
PDFReal scale = 0.1;
// Now, we can only have digits and a single dot
while (!isAtEnd())
{
if (!dot && fetchChar('.'))
{
// Entering real mode
dot = true;
treatAsReal = true;
real = integer;
}
else if (std::isdigit(static_cast<unsigned char>(lookChar())))
{
atLeastOneDigit = true;
PDFInteger digit = lookChar() - '0';
++m_current;
if (!treatAsReal)
{
// Treat value as integer
integer = integer * 10 + digit;
// Check, if integer has not overflown, if yes, treat him as real
// according to the PDF 1.7 specification.
if (!isValidInteger(integer))
{
treatAsReal = true;
real = integer;
}
}
else
{
// Treat value as real
if (!dot)
{
real = real * 10.0 + digit;
}
else
{
real = real + scale * digit;
scale *= 0.1;
}
}
}
else if (isWhitespace(lookChar()) || isDelimiter(lookChar()))
{
// Whitespace appeared - whitespaces/delimiters delimits tokens - break
break;
}
else
{
// Another character other than dot and digit appeared - this is an error
error(tr("Invalid format of number. Character '%1' appeared.").arg(lookChar()));
}
}
// Now, we have scanned whole token number, check for errors.
if (positive && negative)
{
error(tr("Both '+' and '-' appeared in number. Invalid format of number."));
}
if (!atLeastOneDigit)
{
error(tr("Bad format of number - no digits appeared."));
}
// Check for real overflow
if (treatAsReal && !std::isfinite(real))
{
error(tr("Real number overflow."));
}
if (negative)
{
integer = -integer;
real = -real;
}
return !treatAsReal ? Token(TokenType::Integer, QVariant(static_cast<qint64>(integer))) : Token(TokenType::Real, real);
}
case CHAR_LEFT_BRACKET:
{
// String '(', sequence of literal characters enclosed in "()", see PDF 1.7 Reference,
// chapter 3.2.3. Note: literal string can have properly balanced brackets inside.
int parenthesisBalance = 1;
QByteArray string;
string.reserve(STRING_BUFFER_RESERVE);
// Skip first character
fetchChar();
while (true)
{
// Scan string, see, what next char is.
const char character = fetchChar();
switch (character)
{
case CHAR_LEFT_BRACKET:
{
++parenthesisBalance;
string.push_back(character);
break;
}
case CHAR_RIGHT_BRACKET:
{
if (--parenthesisBalance == 0)
{
// We are done.
return Token(TokenType::String, string);
}
else
{
string.push_back(character);
}
break;
}
case CHAR_BACKSLASH:
{
// Escape sequence. Check, what it means. Possible values are in PDF 1.7 Reference,
// chapter 3.2.3, Table 3.2 - Escape Sequence in Literal Strings
const char escaped = fetchChar();
switch (escaped)
{
case 'n':
{
string += '\n';
break;
}
case 'r':
{
string += '\r';
break;
}
case 't':
{
string += '\t';
break;
}
case 'b':
{
string += '\b';
break;
}
case 'f':
{
string += '\f';
break;
}
case '\\':
case '(':
case ')':
{
string += escaped;
break;
}
case '\n':
{
// Nothing done here, EOL is not part of the string, because it was escaped
break;
}
case '\r':
{
// Skip EOL
fetchChar('\n');
break;
}
default:
{
// Undo fetch char, we do not want to miss first digit
--m_current;
// Try to scan octal value. Octal number can have 3 digits in this case.
// According to specification, overflow value can be truncated.
int octalNumber = -1;
if (fetchOctalNumber(3, &octalNumber))
{
string += static_cast<char>(octalNumber);
}
else
{
error(tr("Expected octal number with 1-3 digits."));
}
break;
}
}
break;
}
default:
{
// Normal character
string.push_back(character);
break;
}
}
}
// This code should be unreachable. Either normal string is scanned - then it is returned
// in the while cycle above, or exception is thrown.
Q_ASSERT(false);
return Token(TokenType::EndOfFile);
}
case CHAR_SLASH:
{
// Name object. According to the PDF Reference 1.7, chapter 3.2.4 name object can have zero length,
// and can contain #XX characters, where XX is hexadecimal number.
fetchChar();
QByteArray name;
name.reserve(NAME_BUFFER_RESERVE);
while (!isAtEnd())
{
if (fetchChar(CHAR_MARK))
{
const char hexHighCharacter = fetchChar();
const char hexLowCharacter = fetchChar();
if (isHexCharacter(hexHighCharacter) && isHexCharacter(hexLowCharacter))
{
name += QByteArray::fromHex(QByteArray::fromRawData(m_current - 2, 2));
}
else
{
// Throw an error - hexadecimal number is expected.
error(tr("Hexadecimal number must follow character '#' in the name."));
}
continue;
}
// Now, we have other character, than '#', if it is a regular character,
// then add it to the name, otherwise end scanning.
const char character = lookChar();
if (isRegular(character))
{
name += character;
++m_current;
}
else
{
// Matched non-regular character - end of name.
break;
}
}
return Token(TokenType::Name, std::move(name));
}
case CHAR_ARRAY_START:
{
++m_current;
return Token(TokenType::ArrayStart);
}
case CHAR_ARRAY_END:
{
++m_current;
return Token(TokenType::ArrayEnd);
}
case CHAR_LEFT_ANGLE:
{
++m_current;
// Check if it is dictionary start
if (fetchChar(CHAR_LEFT_ANGLE))
{
return Token(TokenType::DictionaryStart);
}
else
{
// Reserve two times normal size, because in hexadecimal string, each character
// is represented as a pair of hexadecimal numbers.
QByteArray hexadecimalString;
hexadecimalString.reserve(STRING_BUFFER_RESERVE * 2);
// Scan hexadecimal string
while (!isAtEnd())
{
const char character = fetchChar();
if (isHexCharacter(character))
{
hexadecimalString += character;
}
else if (character == CHAR_RIGHT_ANGLE)
{
// End of string mark. According to the specification, string can contain odd number
// of hexadecimal digits, in this case, zero is appended to the string.
if (hexadecimalString.size() % 2 == 1)
{
hexadecimalString += '0';
}
QByteArray decodedString = QByteArray::fromHex(hexadecimalString);
return Token(TokenType::String, std::move(decodedString));
}
else
{
// This is unexpected. Invalid character in hexadecimal string.
error(tr("Invalid character in hexadecimal string."));
}
}
error(tr("Unexpected end of stream reached while scanning hexadecimal string."));
}
break;
}
case CHAR_RIGHT_ANGLE:
{
// This must be a mark of dictionary end, because in other way, we should reach end of
// string in the code above.
++m_current;
if (fetchChar(CHAR_RIGHT_ANGLE))
{
return Token(TokenType::DictionaryEnd);
}
error(tr("Invalid character '%1'").arg(CHAR_RIGHT_ANGLE));
break;
}
default:
{
// Now, we have skipped whitespaces. So actual character must be either regular, or it is special.
// We have treated all special characters above. For this reason, if we match special character,
// then we report an error.
Q_ASSERT(!isWhitespace(lookChar()));
if (isRegular(lookChar()))
{
// It should be sequence of regular characters - command, true, false, null...
QByteArray command;
command.reserve(COMMAND_BUFFER_RESERVE);
while (!isAtEnd() && isRegular(lookChar()))
{
command += fetchChar();
}
if (command == BOOL_OBJECT_TRUE_STRING)
{
return Token(TokenType::Boolean, true);
}
else if (command == BOOL_OBJECT_FALSE_STRING)
{
return Token(TokenType::Boolean, false);
}
else if (command == NULL_OBJECT_STRING)
{
return Token(TokenType::Null);
}
else
{
return Token(TokenType::Command, std::move(command));
}
}
else if (m_tokenizingPostScriptFunction)
{
const char currentChar = lookChar();
if (currentChar == CHAR_LEFT_CURLY_BRACKET || currentChar == CHAR_RIGHT_CURLY_BRACKET)
{
return Token(TokenType::Command, QByteArray(1, fetchChar()));
}
error(tr("Unexpected character '%1' in the stream.").arg(currentChar));
}
else
{
error(tr("Unexpected character '%1' in the stream.").arg(lookChar()));
}
break;
}
}
return Token(TokenType::EndOfFile);
}
void PDFLexicalAnalyzer::seek(PDFInteger offset)
{
const PDFInteger limit = std::distance(m_begin, m_end);
if (offset >= 0 && offset <= limit)
{
m_current = std::next(m_begin, offset);
}
else
{
error(tr("Trying to seek stream position to %1 bytes from the start, byte offset is invalid.").arg(offset));
}
}
void PDFLexicalAnalyzer::skipWhitespaceAndComments()
{
bool isComment = false;
while (m_current != m_end)
{
if (isComment)
{
// Comment ends at end of line
if (*m_current == CHAR_CARRIAGE_RETURN || *m_current == CHAR_LINE_FEED)
{
isComment = false;
}
// Commented character - step to the next character
++m_current;
}
else if (*m_current == CHAR_PERCENT)
{
isComment = true;
++m_current;
}
else if (isWhitespace(*m_current))
{
++m_current;
}
else
{
// Not a whitespace and not in comment
break;
}
}
}
void PDFLexicalAnalyzer::skipStreamStart()
{
// According to the PDF Reference 1.7, chapter 3.2.7, after the 'stream' keyword,
// either carriage return + line feed, or just line feed can appear. Eat them.
fetchChar(CHAR_CARRIAGE_RETURN);
fetchChar(CHAR_LINE_FEED);
}
QByteArray PDFLexicalAnalyzer::fetchByteArray(PDFInteger length)
{
Q_ASSERT(length >= 0);
if (std::distance(m_current, m_end) < length)
{
error(tr("Can't read %1 bytes from the input stream. Input stream end reached.").arg(length));
}
QByteArray result(m_current, length);
std::advance(m_current, length);
return result;
}
PDFInteger PDFLexicalAnalyzer::findSubstring(const char* str, PDFInteger position) const
{
const PDFInteger length = std::distance(m_begin, m_end);
if (position < 0 || position >= length)
{
return -1;
}
const PDFInteger substringLength = qstrlen(str);
const PDFInteger startPos = position;
const PDFInteger endPos = length - substringLength;
for (PDFInteger i = startPos; i <= endPos; ++i)
{
Q_ASSERT(std::distance(m_begin + i + substringLength - 1, m_end) >= 0);
if (memcmp(m_begin + i, str, substringLength) == 0)
{
return i;
}
}
return -1;
}
QString PDFLexicalAnalyzer::getStringFromOperandType(TokenType type)
{
QMetaEnum metaEnum = QMetaEnum::fromType<TokenType>();
Q_ASSERT(metaEnum.isValid());
const char* typeName = metaEnum.valueToKey(static_cast<int>(type));
Q_ASSERT(typeName);
return typeName;
}
bool PDFLexicalAnalyzer::fetchChar(const char character)
{
if (!isAtEnd() && lookChar() == character)
{
++m_current;
return true;
}
return false;
}
char PDFLexicalAnalyzer::fetchChar()
{
if (!isAtEnd())
{
return *m_current++;
}
error(tr("Unexpected end of stream reached."));
return 0;
}
bool PDFLexicalAnalyzer::fetchOctalNumber(int maxDigits, int* output)
{
Q_ASSERT(output);
*output = 0;
int fetchedNumbers = 0;
while (!isAtEnd() && fetchedNumbers < maxDigits)
{
const char c = lookChar();
if (c >= '0' && c <= '7')
{
// Valid octal characters
const int number = c - '0';
*output = *output * 8 + number;
++m_current;
++fetchedNumbers;
}
else
{
// Non-octal character reached
break;
}
}
return fetchedNumbers >= 1;
}
constexpr bool PDFLexicalAnalyzer::isHexCharacter(const char character)
{
return (character >= '0' && character <= '9') || (character >= 'A' && character <= 'F') || (character >= 'a' && character <= 'f');
}
void PDFLexicalAnalyzer::error(const QString& message) const
{
std::size_t distance = std::distance(m_begin, m_current);
throw PDFException(tr("Error near position %1. %2").arg(distance).arg(message));
}
PDFObject PDFParsingContext::getObject(const PDFObject& object)
{
if (object.isReference())
{
Q_ASSERT(m_objectFetcher);
return m_objectFetcher(this, object.getReference());
}
return object;
}
void PDFParsingContext::beginParsingObject(PDFObjectReference reference)
{
if (m_activeParsedObjectSet.search(reference))
{
throw PDFException(tr("Cyclical reference found while parsing object %1 %2.").arg(reference.objectNumber).arg(reference.generation));
}
else
{
m_activeParsedObjectSet.insert(reference);
}
}
void PDFParsingContext::endParsingObject(PDFObjectReference reference)
{
Q_ASSERT(m_activeParsedObjectSet.search(reference));
m_activeParsedObjectSet.erase(reference);
}
PDFParser::PDFParser(const QByteArray& data, PDFParsingContext* context, Features features) :
m_context(context),
m_features(features),
m_lexicalAnalyzer(data.constData(), data.constData() + data.size())
{
m_lookAhead1 = fetch();
m_lookAhead2 = fetch();
}
PDFParser::PDFParser(const char* begin, const char* end, PDFParsingContext* context, Features features) :
m_context(context),
m_features(features),
m_lexicalAnalyzer(begin, end)
{
m_lookAhead1 = fetch();
m_lookAhead2 = fetch();
}
PDFParser::PDFParser(std::function<PDFLexicalAnalyzer::Token ()> tokenFetcher) :
m_tokenFetcher(qMove(tokenFetcher)),
m_context(nullptr),
m_features(None),
m_lexicalAnalyzer(nullptr, nullptr)
{
m_lookAhead1 = fetch();
m_lookAhead2 = fetch();
}
PDFObject PDFParser::getObject()
{
switch (m_lookAhead1.type)
{
case PDFLexicalAnalyzer::TokenType::Boolean:
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::Bool);
const bool value = m_lookAhead1.data.toBool();
shift();
return PDFObject::createBool(value);
}
case PDFLexicalAnalyzer::TokenType::Integer:
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::LongLong);
const PDFInteger value = m_lookAhead1.data.toLongLong();
shift();
// We must check, if we are reading reference. In this case,
// actual value is integer and next value is command "R".
if (m_lookAhead1.type == PDFLexicalAnalyzer::TokenType::Integer &&
m_lookAhead2.type == PDFLexicalAnalyzer::TokenType::Command &&
m_lookAhead2.data.toByteArray() == PDF_REFERENCE_COMMAND)
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::LongLong);
const PDFInteger generation = m_lookAhead1.data.toLongLong();
shift();
shift();
return PDFObject::createReference(PDFObjectReference(value, generation));
}
else
{
// Just normal integer
return PDFObject::createInteger(value);
}
}
case PDFLexicalAnalyzer::TokenType::Real:
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::Double);
const PDFReal value = m_lookAhead1.data.toDouble();
shift();
return PDFObject::createReal(value);
}
case PDFLexicalAnalyzer::TokenType::String:
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::QByteArray);
QByteArray array = m_lookAhead1.data.toByteArray();
array.shrink_to_fit();
shift();
return PDFObject::createString(std::move(array));
}
case PDFLexicalAnalyzer::TokenType::Name:
{
Q_ASSERT(m_lookAhead1.data.typeId() == QMetaType::QByteArray);
QByteArray array = m_lookAhead1.data.toByteArray();
array.shrink_to_fit();
shift();
return PDFObject::createName(std::move(array));
}
case PDFLexicalAnalyzer::TokenType::ArrayStart:
{
shift();
// Create shared pointer to the array (if the exception is thrown, array
// will be properly destroyed by the shared array destructor)
std::shared_ptr<PDFObjectContent> arraySharedPointer = std::make_shared<PDFArray>();
PDFArray* array = static_cast<PDFArray*>(arraySharedPointer.get());
while (m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::EndOfFile &&
m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::ArrayEnd)
{
array->appendItem(getObject());
}
// Now, we have either end of file, or array end. If former appears, then
// it is an error - error should be reported.
if (m_lookAhead1.type == PDFLexicalAnalyzer::TokenType::EndOfFile)
{
error(tr("Stream ended inside array."));
}
else
{
shift();
return PDFObject::createArray(std::move(arraySharedPointer));
}
return PDFObject::createNull();
}
case PDFLexicalAnalyzer::TokenType::DictionaryStart:
{
shift();
// Start reading the dictionary. BEWARE! It can also be a stream. In this case,
// we must load also the stream content.
std::shared_ptr<PDFDictionary> dictionarySharedPointer = std::make_shared<PDFDictionary>();
PDFDictionary* dictionary = dictionarySharedPointer.get();
// Now, scan key/value pairs
while (m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::EndOfFile &&
m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::DictionaryEnd)
{
// First value should be a key
if (m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::Name)
{
error(tr("Dictionary key must be a name."));
}
QByteArray key = m_lookAhead1.data.toByteArray();
shift();
// Second value should be a value
PDFObject object = getObject();
dictionary->addEntry(PDFInplaceOrMemoryString(std::move(key)), std::move(object));
}
// Now, we should reach dictionary end. If it is not the case, then end of stream occured.
if (m_lookAhead1.type != PDFLexicalAnalyzer::TokenType::DictionaryEnd)
{
error(tr("End of stream inside dictionary reached."));
}
// Is it a content stream?
if (m_lookAhead2.type == PDFLexicalAnalyzer::TokenType::Command &&
m_lookAhead2.data.toByteArray() == PDF_STREAM_START_COMMAND)
{
if (!m_features.testFlag(AllowStreams))
{
error(tr("Streams are not allowed in this context."));
}
// Read stream content. According to the PDF Reference 1.7, chapter 3.2.7, stream
// content can be placed in the file. If this is the case, then try to load file
// content in the memory. But even in this case, stream content should be skipped.
if (!dictionary->hasKey(PDF_STREAM_DICT_LENGTH))
{
error(tr("Stream length is not specified."));
}
PDFObject lengthObject = m_context ? m_context->getObject(dictionary->get(PDF_STREAM_DICT_LENGTH)) : dictionary->get(PDF_STREAM_DICT_LENGTH);
if (!lengthObject.isInt())
{
error(tr("Bad value of stream length. It should be an integer number."));
}
PDFInteger length = lengthObject.getInteger();
if (length < 0)
{
error(tr("Length of the stream buffer is negative (%1). It must be a positive number.").arg(length));
}
// Skip the stream start, then fetch data of the stream
m_lexicalAnalyzer.skipStreamStart();
QByteArray buffer = m_lexicalAnalyzer.fetchByteArray(length);
// According to the PDF Reference 1.7, chapter 3.2.7, stream content can also be specified
// in the external file. If this is the case, then we must try to load the stream data
// from the external file.
if (dictionary->hasKey(PDF_STREAM_DICT_FILE_SPECIFICATION))
{
PDFObject fileName = m_context ? m_context->getObject(dictionary->get(PDF_STREAM_DICT_FILE_SPECIFICATION)) : dictionary->get(PDF_STREAM_DICT_FILE_SPECIFICATION);
if (!fileName.isString())
{
error(tr("Stream data should be in external file, but invalid file name is specified."));
}
QFile streamDataFile(fileName.getString());
if (streamDataFile.open(QFile::ReadOnly))
{
buffer = streamDataFile.readAll();
streamDataFile.close();
}
else
{
error(tr("Can't open stream data stored in external file '%1'.").arg(QString(fileName.getString())));
}
}
// Refill lookahead tokens
m_lookAhead1 = fetch();
m_lookAhead2 = fetch();
if (m_lookAhead1.type == PDFLexicalAnalyzer::TokenType::Command &&
m_lookAhead1.data.toByteArray() == PDF_STREAM_END_COMMAND)
{
// Everything OK, just advance and return stream object
shift();
return PDFObject::createStream(std::make_shared<PDFStream>(std::move(*dictionary), std::move(buffer)));
}
else
{
error(tr("End of stream should end in keyword 'endstream'."));
}
}
else
{
// Just shift (eat dictionary end) and return dictionary
shift();
return PDFObject::createDictionary(std::move(dictionarySharedPointer));
}
return PDFObject::createNull();
}
case PDFLexicalAnalyzer::TokenType::Null:
{
shift();
return PDFObject::createNull();
}
case PDFLexicalAnalyzer::TokenType::ArrayEnd:
case PDFLexicalAnalyzer::TokenType::DictionaryEnd:
case PDFLexicalAnalyzer::TokenType::Command:
{
error(tr("Cannot read object. Unexpected token appeared."));
break;
}
case PDFLexicalAnalyzer::TokenType::EndOfFile:
{
error(tr("Cannot read object. End of stream reached."));
break;
}
}
// This code should be unreachable. All values should be handled in the switch above.
Q_ASSERT(false);
return PDFObject::createNull();
}
PDFObject PDFParser::getObject(PDFObjectReference reference)
{
PDFParsingContext::PDFParsingContextGuard guard(m_context, reference);
return getObject();
}
void PDFParser::error(const QString& message) const
{
throw PDFException(message);
}
void PDFParser::seek(PDFInteger offset)
{
m_lexicalAnalyzer.seek(offset);
// We must read lookahead symbols, because we invalidated them
m_lookAhead1 = fetch();
m_lookAhead2 = fetch();
}
bool PDFParser::fetchCommand(const char* command)
{
if (m_lookAhead1.type == PDFLexicalAnalyzer::TokenType::Command &&
m_lookAhead1.data.toByteArray() == command)
{
shift();
return true;
}
return false;
}
void PDFParser::shift()
{
m_lookAhead1 = std::move(m_lookAhead2);
m_lookAhead2 = fetch();
}
PDFLexicalAnalyzer::Token PDFParser::fetch()
{
return m_tokenFetcher ? m_tokenFetcher() : m_lexicalAnalyzer.fetch();
}
} // namespace pdf