PDF4QT/Pdf4QtLib/sources/pdfimage.cpp
2020-12-20 19:03:58 +01:00

870 lines
37 KiB
C++

// Copyright (C) 2019-2020 Jakub Melka
//
// This file is part of Pdf4Qt.
//
// Pdf4Qt is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Pdf4Qt is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Pdf4Qt. If not, see <https://www.gnu.org/licenses/>.
#include "pdfimage.h"
#include "pdfdocument.h"
#include "pdfconstants.h"
#include "pdfexception.h"
#include "pdfutils.h"
#include "pdfjbig2decoder.h"
#include "pdfccittfaxdecoder.h"
#include <openjpeg.h>
#include <jpeglib.h>
namespace pdf
{
struct PDFJPEG2000ImageData
{
const QByteArray* byteArray = nullptr;
OPJ_SIZE_T position = 0;
std::vector<PDFRenderError> errors;
static OPJ_SIZE_T read(void* p_buffer, OPJ_SIZE_T p_nb_bytes, void* p_user_data);
static OPJ_BOOL seek(OPJ_OFF_T p_nb_bytes, void* p_user_data);
static OPJ_OFF_T skip(OPJ_OFF_T p_nb_bytes, void* p_user_data);
};
struct PDFJPEGDCTSource
{
jpeg_source_mgr sourceManager;
const QByteArray* buffer = nullptr;
int startByte = 0;
};
PDFImage PDFImage::createImage(const PDFDocument* document,
const PDFStream* stream,
PDFColorSpacePointer colorSpace,
bool isSoftMask,
RenderingIntent renderingIntent,
PDFRenderErrorReporter* errorReporter)
{
PDFImage image;
image.m_colorSpace = colorSpace;
image.m_renderingIntent = renderingIntent;
const PDFDictionary* dictionary = stream->getDictionary();
QByteArray content = document->getDecodedStream(stream);
PDFDocumentDataLoaderDecorator loader(document);
if (content.isEmpty())
{
throw PDFException(PDFTranslationContext::tr("Image has not data."));
}
PDFImageData::MaskingType maskingType = PDFImageData::MaskingType::None;
std::vector<PDFInteger> mask;
std::vector<PDFReal> decode = loader.readNumberArrayFromDictionary(dictionary, "Decode");
bool imageMask = loader.readBooleanFromDictionary(dictionary, "ImageMask", false);
std::vector<PDFReal> matte = loader.readNumberArrayFromDictionary(dictionary, "Matte");
PDFInteger sMaskInData = loader.readIntegerFromDictionary(dictionary, "SMaskInData", 0);
image.m_interpolate = loader.readBooleanFromDictionary(dictionary, "Interpolate", false);
image.m_alternates = loader.readObjectList<PDFAlternateImage>(dictionary->get("Alternates"));
image.m_name = loader.readNameFromDictionary(dictionary, "Name");
image.m_structuralParent = loader.readIntegerFromDictionary(dictionary, "StructParent", 0);
image.m_webCaptureContentSetId = loader.readStringFromDictionary(dictionary, "ID");
image.m_OPI = dictionary->get("OPI");
image.m_OC = dictionary->get("OC");
image.m_metadata = dictionary->get("Metadata");
image.m_associatedFiles = dictionary->get("AF");
image.m_measure = dictionary->get("Measure");
image.m_pointData = dictionary->get("PtData");
if (isSoftMask && (imageMask || dictionary->hasKey("Mask") || dictionary->hasKey("SMask")))
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Soft mask image can't have mask / soft mask itself."));
}
if (!isSoftMask && !matte.empty())
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Regular image can't have Matte entry (used for soft masks)."));
}
// Set rendering intent
if (dictionary->hasKey("Intent"))
{
QByteArray renderingIntentName = loader.readNameFromDictionary(dictionary, "Intent");
if (renderingIntentName == "Perceptual")
{
image.m_renderingIntent = RenderingIntent::Perceptual;
}
else if (renderingIntentName == "AbsoluteColorimetric")
{
image.m_renderingIntent = RenderingIntent::AbsoluteColorimetric;
}
else if (renderingIntentName == "RelativeColorimetric")
{
image.m_renderingIntent = RenderingIntent::RelativeColorimetric;
}
else if (renderingIntentName == "Saturation")
{
image.m_renderingIntent = RenderingIntent::Saturation;
}
}
// Fill Mask
if (dictionary->hasKey("Mask"))
{
const PDFObject& object = document->getObject(dictionary->get("Mask"));
if (object.isArray())
{
maskingType = PDFImageData::MaskingType::ColorKeyMasking;
mask = loader.readIntegerArray(object);
}
else if (object.isStream())
{
PDFImage softMaskImage = createImage(document, object.getStream(), colorSpace, false, renderingIntent, errorReporter);
if (softMaskImage.m_imageData.getMaskingType() != PDFImageData::MaskingType::ImageMask ||
softMaskImage.m_imageData.getColorChannels() != 1 ||
softMaskImage.m_imageData.getBitsPerComponent() != 1)
{
throw PDFRendererException(RenderErrorType::NotImplemented, PDFTranslationContext::tr("Invalid mask image."));
}
// We must alter decode, because it has opposite meaning (it is transparency)
std::vector<PDFReal> decode = softMaskImage.m_imageData.getDecode();
if (decode.size() < 2)
{
decode = { 0.0, 1.0};
}
std::swap(decode[0], decode[1]);
// Create soft mask from image
maskingType = PDFImageData::MaskingType::SoftMask;
image.m_softMask = qMove(softMaskImage.m_imageData);
image.m_softMask.setMaskingType(PDFImageData::MaskingType::None);
image.m_softMask.setDecode(qMove(decode));
}
}
else if (dictionary->hasKey("SMask"))
{
// Parse soft mask image
const PDFObject& softMaskObject = document->getObject(dictionary->get("SMask"));
if (softMaskObject.isStream())
{
PDFImage softMaskImage = createImage(document, softMaskObject.getStream(), PDFColorSpacePointer(new PDFDeviceGrayColorSpace()), true, renderingIntent, errorReporter);
maskingType = PDFImageData::MaskingType::SoftMask;
image.m_softMask = qMove(softMaskImage.m_imageData);
}
else if (!softMaskObject.isNull())
{
throw PDFRendererException(RenderErrorType::NotImplemented, PDFTranslationContext::tr("Invalid soft mask object."));
}
}
if (imageMask)
{
maskingType = PDFImageData::MaskingType::ImageMask;
}
// Retrieve filters
PDFObject filters;
if (dictionary->hasKey(PDF_STREAM_DICT_FILTER))
{
filters = document->getObject(dictionary->get(PDF_STREAM_DICT_FILTER));
}
else if (dictionary->hasKey(PDF_STREAM_DICT_FILE_FILTER))
{
filters = document->getObject(dictionary->get(PDF_STREAM_DICT_FILE_FILTER));
}
// Retrieve filter parameters
PDFObject filterParameters;
if (dictionary->hasKey(PDF_STREAM_DICT_DECODE_PARMS))
{
filterParameters = document->getObject(dictionary->get(PDF_STREAM_DICT_DECODE_PARMS));
}
else if (dictionary->hasKey(PDF_STREAM_DICT_FDECODE_PARMS))
{
filterParameters = document->getObject(dictionary->get(PDF_STREAM_DICT_FDECODE_PARMS));
}
QByteArray imageFilterName;
if (filters.isName())
{
imageFilterName = filters.getString();
}
else if (filters.isArray())
{
const PDFArray* filterArray = filters.getArray();
const size_t filterCount = filterArray->getCount();
if (filterCount)
{
const PDFObject& object = document->getObject(filterArray->getItem(filterCount - 1));
if (object.isName())
{
imageFilterName = object.getString();
}
}
}
const PDFDictionary* filterParamsDictionary = nullptr;
if (filterParameters.isDictionary())
{
filterParamsDictionary = filterParameters.getDictionary();
}
else if (filterParameters.isArray())
{
const PDFArray* filterParametersArray = filterParameters.getArray();
const size_t filterParamsCount = filterParametersArray->getCount();
if (filterParamsCount)
{
const PDFObject& object = document->getObject(filterParametersArray->getItem(filterParamsCount - 1));
if (object.isDictionary())
{
filterParamsDictionary = object.getDictionary();
}
}
}
if (imageFilterName == "DCTDecode" || imageFilterName == "DCT")
{
int colorTransform = loader.readIntegerFromDictionary(dictionary, "ColorTransform", -1);
jpeg_decompress_struct codec;
jpeg_error_mgr errorManager;
std::memset(&codec, 0, sizeof(jpeg_decompress_struct));
std::memset(&errorManager, 0, sizeof(errorManager));
PDFJPEGDCTSource source;
source.buffer = &content;
std::memset(&source.sourceManager, 0, sizeof(jpeg_source_mgr));
// Fix issue, that image doesn't start with FFD8 (start of image marker). If this
// occurs, try to find sequence FFD8, and if we can find it, then advance the buffer.
source.startByte = qMax(content.indexOf("\xFF\xD8"), 0);
if (source.startByte > 0)
{
errorReporter->reportRenderError(RenderErrorType::Warning, PDFTranslationContext::tr("Malformed data while reading JPEG stream. %1 bytes skipped.").arg(source.startByte));
}
auto errorMethod = [](j_common_ptr ptr)
{
char buffer[JMSG_LENGTH_MAX] = { };
(ptr->err->format_message)(ptr, buffer);
jpeg_destroy(ptr);
throw PDFException(PDFTranslationContext::tr("Error reading JPEG (DCT) image: %1.").arg(QString::fromLatin1(buffer)));
};
auto fillInputBufferMethod = [](j_decompress_ptr decompress) -> boolean
{
PDFJPEGDCTSource* source = reinterpret_cast<PDFJPEGDCTSource*>(decompress->src);
if (!source->sourceManager.next_input_byte)
{
const QByteArray* buffer = source->buffer;
source->sourceManager.next_input_byte = reinterpret_cast<const JOCTET*>(buffer->constData());
source->sourceManager.bytes_in_buffer = buffer->size();
source->sourceManager.next_input_byte += source->startByte;
source->sourceManager.bytes_in_buffer -= source->startByte;
return TRUE;
}
return FALSE;
};
auto skipInputDataMethod = [](j_decompress_ptr decompress, long num_bytes)
{
PDFJPEGDCTSource* source = reinterpret_cast<PDFJPEGDCTSource*>(decompress->src);
const size_t skippedBytes = qMin(source->sourceManager.bytes_in_buffer, static_cast<size_t>(num_bytes));
source->sourceManager.next_input_byte += skippedBytes;
source->sourceManager.bytes_in_buffer -= skippedBytes;
};
source.sourceManager.bytes_in_buffer = 0;
source.sourceManager.next_input_byte = nullptr;
source.sourceManager.init_source = [](j_decompress_ptr) { };
source.sourceManager.fill_input_buffer = fillInputBufferMethod;
source.sourceManager.skip_input_data = skipInputDataMethod;
source.sourceManager.resync_to_restart = jpeg_resync_to_restart;
source.sourceManager.term_source = [](j_decompress_ptr) { };
jpeg_std_error(&errorManager);
errorManager.error_exit = errorMethod;
codec.err = &errorManager;
jpeg_create_decompress(&codec);
codec.src = reinterpret_cast<jpeg_source_mgr*>(&source);
if (jpeg_read_header(&codec, TRUE) == JPEG_HEADER_OK)
{
// Determine color transform
if (colorTransform == -1 && codec.saw_Adobe_marker)
{
colorTransform = codec.Adobe_transform;
}
// Set the input transform
if (colorTransform > -1)
{
switch (codec.num_components)
{
case 3:
{
codec.jpeg_color_space = colorTransform ? JCS_YCbCr : JCS_RGB;
break;
}
case 4:
{
codec.jpeg_color_space = colorTransform ? JCS_YCCK : JCS_CMYK;
break;
}
default:
break;
}
}
jpeg_start_decompress(&codec);
const JDIMENSION rowStride = codec.output_width * codec.output_components;
JSAMPARRAY samples = codec.mem->alloc_sarray(reinterpret_cast<j_common_ptr>(&codec), JPOOL_IMAGE, rowStride, 1);
JDIMENSION scanLineCount = codec.output_height;
const unsigned int width = codec.output_width;
const unsigned int height = codec.output_height;
const unsigned int components = codec.output_components;
const unsigned int bitsPerComponent = 8;
QByteArray buffer(rowStride * height, 0);
JSAMPROW rowData = reinterpret_cast<JSAMPROW>(buffer.data());
while (scanLineCount)
{
JDIMENSION readCount = jpeg_read_scanlines(&codec, samples, 1);
std::memcpy(rowData, samples[0], rowStride);
scanLineCount -= readCount;
rowData += rowStride;
}
jpeg_finish_decompress(&codec);
image.m_imageData = PDFImageData(components, bitsPerComponent, width, height, rowStride, maskingType, qMove(buffer), qMove(mask), qMove(decode), qMove(matte));
}
jpeg_destroy_decompress(&codec);
}
else if (imageFilterName == "JPXDecode")
{
PDFJPEG2000ImageData imageData;
imageData.byteArray = &content;
imageData.position = 0;
auto warningCallback = [](const char* message, void* userData)
{
PDFJPEG2000ImageData* data = reinterpret_cast<PDFJPEG2000ImageData*>(userData);
data->errors.push_back(PDFRenderError(RenderErrorType::Warning, PDFTranslationContext::tr("JPEG 2000 Warning: %1").arg(QString::fromLatin1(message))));
};
auto errorCallback = [](const char* message, void* userData)
{
PDFJPEG2000ImageData* data = reinterpret_cast<PDFJPEG2000ImageData*>(userData);
data->errors.push_back(PDFRenderError(RenderErrorType::Error, PDFTranslationContext::tr("JPEG 2000 Error: %1").arg(QString::fromLatin1(message))));
};
opj_dparameters_t decompressParameters;
opj_set_default_decoder_parameters(&decompressParameters);
const bool isIndexed = dynamic_cast<const PDFIndexedColorSpace*>(image.m_colorSpace.data());
if (isIndexed)
{
// What is this flag for? When we have indexed color space, we do not want to resolve index to color
// using the color map in the image. Instead of that, we just get indices and resolve them using
// our color space.
decompressParameters.flags |= OPJ_DPARAMETERS_IGNORE_PCLR_CMAP_CDEF_FLAG;
}
constexpr CODEC_FORMAT formats[] = { OPJ_CODEC_J2K, OPJ_CODEC_JP2, OPJ_CODEC_JPT, OPJ_CODEC_JPP, OPJ_CODEC_JPX };
for (CODEC_FORMAT format : formats)
{
opj_codec_t* codec = opj_create_decompress(format);
if (!codec)
{
// Codec is not present
continue;
}
opj_set_warning_handler(codec, warningCallback, &imageData);
opj_set_error_handler(codec, errorCallback, &imageData);
opj_stream_t* stream = opj_stream_create(content.size(), OPJ_TRUE);
opj_stream_set_user_data(stream, &imageData, nullptr);
opj_stream_set_user_data_length(stream, content.size());
opj_stream_set_read_function(stream, &PDFJPEG2000ImageData::read);
opj_stream_set_seek_function(stream, &PDFJPEG2000ImageData::seek);
opj_stream_set_skip_function(stream, &PDFJPEG2000ImageData::skip);
// Reset the stream position, clear the data
imageData.position = 0;
imageData.errors.clear();
opj_image_t* jpegImage = nullptr;
// Setup the decoder
if (opj_setup_decoder(codec, &decompressParameters))
{
// Try to read the header
if (opj_read_header(stream, codec, &jpegImage))
{
if (opj_set_decode_area(codec, jpegImage, decompressParameters.DA_x0, decompressParameters.DA_y0, decompressParameters.DA_x1, decompressParameters.DA_y1))
{
if (opj_decode(codec, stream, jpegImage))
{
if (opj_end_decompress(codec, stream))
{
}
}
}
}
}
opj_stream_destroy(stream);
opj_destroy_codec(codec);
stream = nullptr;
codec = nullptr;
// If we have a valid image, then adjust it
if (jpegImage)
{
// This image type can have color space defined in the data (definition of color space in PDF
// is only optional). So, if we doesn't have a color space, then we must determine it from the data.
if (!image.m_colorSpace)
{
switch (jpegImage->color_space)
{
case OPJ_CLRSPC_SRGB:
image.m_colorSpace.reset(new PDFDeviceRGBColorSpace());
break;
case OPJ_CLRSPC_GRAY:
image.m_colorSpace.reset(new PDFDeviceGrayColorSpace());
break;
case OPJ_CLRSPC_CMYK:
image.m_colorSpace.reset(new PDFDeviceCMYKColorSpace());
break;
default:
imageData.errors.push_back(PDFRenderError(RenderErrorType::Error, PDFTranslationContext::tr("Unknown color space for JPEG 2000 image.")));
break;
}
// Jakub Melka: Try to use ICC profile, if image has it
if (jpegImage->icc_profile_buf && jpegImage->icc_profile_len > 0 && image.m_colorSpace)
{
QByteArray iccProfileData(reinterpret_cast<const char*>(jpegImage->icc_profile_buf), jpegImage->icc_profile_len);
PDFICCBasedColorSpace::Ranges ranges = { 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 };
image.m_colorSpace.reset(new PDFICCBasedColorSpace(image.m_colorSpace, ranges, qMove(iccProfileData), PDFObjectReference()));
}
}
// First we must check, if all components are valid (i.e has same width/height/precision)
std::vector<OPJ_UINT32> ordinaryComponents;
std::vector<OPJ_UINT32> alphaComponents;
bool valid = true;
const OPJ_UINT32 componentCount = jpegImage->numcomps;
ordinaryComponents.reserve(componentCount);
for (OPJ_UINT32 i = 0; i < componentCount; ++i)
{
if (jpegImage->comps[0].w != jpegImage->comps[i].w ||
jpegImage->comps[0].h != jpegImage->comps[i].h ||
jpegImage->comps[0].prec != jpegImage->comps[i].prec ||
jpegImage->comps[0].sgnd != jpegImage->comps[i].sgnd)
{
valid = false;
break;
}
else
{
// Fill in ordinary component, or alpha component
if (!jpegImage->comps[i].alpha)
{
ordinaryComponents.push_back(i);
}
else
{
alphaComponents.push_back(i);
}
}
}
if (valid)
{
const size_t colorSpaceComponentCount = image.m_colorSpace->getColorComponentCount();
const bool hasAlphaChannel = !alphaComponents.empty();
if (colorSpaceComponentCount < ordinaryComponents.size())
{
// We have too much ordinary components
imageData.errors.push_back(PDFRenderError(RenderErrorType::Warning, PDFTranslationContext::tr("JPEG 2000 image has too much non-alpha channels. Ignoring %1 channels.").arg(ordinaryComponents.size() - colorSpaceComponentCount)));
}
if (alphaComponents.size() > 1)
{
// We support only one alpha channel component
imageData.errors.push_back(PDFRenderError(RenderErrorType::Warning, PDFTranslationContext::tr("JPEG 2000 image has too much alpha channels. Ignoring %1 alpha channels.").arg(alphaComponents.size() - 1)));
}
const OPJ_UINT32 w = jpegImage->comps[0].w;
const OPJ_UINT32 h = jpegImage->comps[0].h;
const OPJ_UINT32 prec = jpegImage->comps[0].prec;
const OPJ_UINT32 sgnd = jpegImage->comps[0].sgnd;
int signumCorrection = (sgnd) ? (1 << (prec - 1)) : 0;
int shiftLeft = (jpegImage->comps[0].prec < 8) ? 8 - jpegImage->comps[0].prec : 0;
int shiftRight = (jpegImage->comps[0].prec > 8) ? jpegImage->comps[0].prec - 8 : 0;
auto transformValue = [signumCorrection, isIndexed, shiftLeft, shiftRight](int value) -> unsigned char
{
value += signumCorrection;
if (!isIndexed)
{
// Indexed color space should have at most 255 indices, do not modify indices in this case
if (shiftLeft > 0)
{
value = value << shiftLeft;
}
else if (shiftRight > 0)
{
// We clamp value to the lower part (so, we use similar algorithm as in 'floor' function).
//
value = value >> shiftRight;
}
}
value = qBound(0, value, 255);
return static_cast<unsigned char>(value);
};
// Variables for image data. We convert all components to the 8-bit format
const size_t ordinaryComponentCount = ordinaryComponents.size();
unsigned int components = static_cast<unsigned int>(qMin(ordinaryComponentCount, colorSpaceComponentCount));
unsigned int bitsPerComponent = 8;
unsigned int width = w;
unsigned int height = h;
unsigned int stride = w * components;
QByteArray imageDataBuffer(components * width * height, 0);
for (unsigned int row = 0; row < h; ++row)
{
for (unsigned int col = 0; col < w; ++col)
{
for (unsigned int componentIndex = 0; componentIndex < components; ++ componentIndex)
{
int index = stride * row + col * components + componentIndex;
Q_ASSERT(index < imageDataBuffer.size());
imageDataBuffer[index] = transformValue(jpegImage->comps[ordinaryComponents[componentIndex]].data[w * row + col]);
}
}
}
image.m_imageData = PDFImageData(components, bitsPerComponent, width, height, stride, maskingType, qMove(imageDataBuffer), qMove(mask), qMove(decode), qMove(matte));
valid = image.m_imageData.isValid();
// Handle the alpha channel buffer - create soft mask. If SMaskInData equals to 1, then alpha channel is used.
// If SMaskInData equals to 2, then premultiplied alpha channel is used.
if (hasAlphaChannel && (sMaskInData == 1 || sMaskInData == 2))
{
const int alphaStride = w;
QByteArray alphaDataBuffer(width * height, 0);
const OPJ_UINT32 alphaComponentIndex = alphaComponents.front();
for (unsigned int row = 0; row < h; ++row)
{
for (unsigned int col = 0; col < w; ++col)
{
int index = alphaStride * row + col;
Q_ASSERT(index < alphaDataBuffer.size());
alphaDataBuffer[index] = transformValue(jpegImage->comps[alphaComponentIndex].data[w * row + col]);
}
}
if (sMaskInData == 2)
{
matte.resize(ordinaryComponentCount, 0.0);
}
image.m_softMask = PDFImageData(1, bitsPerComponent, width, height, alphaStride, PDFImageData::MaskingType::None, qMove(alphaDataBuffer), { }, { }, qMove(matte));
image.m_imageData.setMaskingType(PDFImageData::MaskingType::SoftMask);
}
}
else
{
// Easiest way is to just add errors to the error list
imageData.errors.push_back(PDFRenderError(RenderErrorType::Error, PDFTranslationContext::tr("Incompatible color components for JPEG 2000 image.")));
}
opj_image_destroy(jpegImage);
if (valid)
{
// Image was successfully decoded
break;
}
}
}
// Report errors, if we have any
if (!imageData.errors.empty())
{
for (const PDFRenderError& error : imageData.errors)
{
QString message = error.message.simplified().trimmed();
if (error.type == RenderErrorType::Error)
{
throw PDFRendererException(error.type, message);
}
else
{
errorReporter->reportRenderError(error.type, message);
}
}
}
}
else if (imageFilterName == "CCITTFaxDecode" || imageFilterName == "CCF")
{
if (!filterParamsDictionary)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid parameters for filter CCITT fax decode."));
}
PDFCCITTFaxDecoderParameters parameters;
parameters.maskingType = maskingType;
parameters.K = loader.readIntegerFromDictionary(filterParamsDictionary, "K", 0);
parameters.hasEndOfLine = loader.readBooleanFromDictionary(filterParamsDictionary, "EndOfLine", false);
parameters.hasEncodedByteAlign = loader.readBooleanFromDictionary(filterParamsDictionary, "EncodedByteAlign", false);
parameters.columns = loader.readIntegerFromDictionary(filterParamsDictionary, "Columns", 1728);
parameters.rows = loader.readIntegerFromDictionary(filterParamsDictionary, "Rows", 0);
parameters.hasEndOfBlock = loader.readBooleanFromDictionary(filterParamsDictionary, "EndOfBlock", true);
parameters.hasBlackIsOne = loader.readBooleanFromDictionary(filterParamsDictionary, "BlackIs1", false);
parameters.damagedRowsBeforeError = loader.readIntegerFromDictionary(filterParamsDictionary, "DamagedRowsBeforeError", 0);
parameters.decode = !decode.empty() ? qMove(decode) : std::vector<PDFReal>({ 0.0, 1.0 });
QByteArray imageDataBuffer = document->getDecodedStream(stream);
PDFCCITTFaxDecoder decoder(&imageDataBuffer, parameters);
image.m_imageData = decoder.decode();
}
else if (imageFilterName == "JBIG2Decode")
{
QByteArray data = document->getDecodedStream(stream);
QByteArray globalData;
if (filterParamsDictionary)
{
const PDFObject& globalDataObject = document->getObject(filterParamsDictionary->get("JBIG2Globals"));
if (globalDataObject.isStream())
{
globalData = document->getDecodedStream(globalDataObject.getStream());
}
}
PDFJBIG2Decoder decoder(qMove(data), qMove(globalData), errorReporter);
image.m_imageData = decoder.decode(maskingType);
image.m_imageData.setDecode(!decode.empty() ? qMove(decode) : std::vector<PDFReal>({ 0.0, 1.0 }));
}
else if (colorSpace || isSoftMask)
{
// We treat data as binary maybe compressed stream (for example by Flate/LZW method), but data can also be not compressed.
const unsigned int components = static_cast<unsigned int>(colorSpace->getColorComponentCount());
const unsigned int bitsPerComponent = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "BitsPerComponent", 8));
const unsigned int width = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "Width", 0));
const unsigned int height = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "Height", 0));
if (bitsPerComponent < 1 || bitsPerComponent > 32)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid number of bits per component (%1).").arg(bitsPerComponent));
}
if (width == 0 || height == 0)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid size of image (%1x%2)").arg(width).arg(height));
}
// Calculate stride
const unsigned int stride = (components * bitsPerComponent * width + 7) / 8;
QByteArray imageDataBuffer = document->getDecodedStream(stream);
image.m_imageData = PDFImageData(components, bitsPerComponent, width, height, stride, maskingType, qMove(imageDataBuffer), qMove(mask), qMove(decode), qMove(matte));
}
else if (imageMask)
{
// If ImageMask is set to true, then "BitsPerComponent" should have always value of 1.
// If this entry is not specified, then the value should be implicitly 1.
const unsigned int bitsPerComponent = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "BitsPerComponent", 1));
if (bitsPerComponent != 1)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid number bits of image mask (should be 1 bit instead of %1 bits).").arg(bitsPerComponent));
}
const unsigned int width = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "Width", 0));
const unsigned int height = static_cast<unsigned int>(loader.readIntegerFromDictionary(dictionary, "Height", 0));
if (width == 0 || height == 0)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid size of image (%1x%2)").arg(width).arg(height));
}
// Calculate stride
const unsigned int stride = (width + 7) / 8;
QByteArray imageDataBuffer = document->getDecodedStream(stream);
image.m_imageData = PDFImageData(1, bitsPerComponent, width, height, stride, maskingType, qMove(imageDataBuffer), qMove(mask), qMove(decode), qMove(matte));
}
return image;
}
QImage PDFImage::getImage(const PDFCMS* cms, PDFRenderErrorReporter* reporter) const
{
const bool isImageMask = m_imageData.getMaskingType() == PDFImageData::MaskingType::ImageMask;
if (m_colorSpace && !isImageMask)
{
return m_colorSpace->getImage(m_imageData, m_softMask, cms, m_renderingIntent, reporter);
}
else if (isImageMask)
{
if (m_imageData.getBitsPerComponent() != 1)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid number bits of image mask (should be 1 bit instead of %1 bits).").arg(m_imageData.getBitsPerComponent()));
}
if (m_imageData.getWidth() == 0 || m_imageData.getHeight() == 0)
{
throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Invalid size of image (%1x%2)").arg(m_imageData.getWidth()).arg(m_imageData.getHeight()));
}
QImage image(m_imageData.getWidth(), m_imageData.getHeight(), QImage::Format_Alpha8);
const bool flip01 = !m_imageData.getDecode().empty() && qFuzzyCompare(m_imageData.getDecode().front(), 1.0);
PDFBitReader reader(&m_imageData.getData(), m_imageData.getBitsPerComponent());
for (unsigned int i = 0, rowCount = m_imageData.getHeight(); i < rowCount; ++i)
{
reader.seek(i * m_imageData.getStride());
unsigned char* outputLine = image.scanLine(i);
for (unsigned int j = 0; j < m_imageData.getWidth(); ++j)
{
const bool transparent = flip01 != static_cast<bool>(reader.read());
*outputLine++ = transparent ? 0x00 : 0xFF;
}
}
return image;
}
return QImage();
}
OPJ_SIZE_T PDFJPEG2000ImageData::read(void* p_buffer, OPJ_SIZE_T p_nb_bytes, void* p_user_data)
{
PDFJPEG2000ImageData* data = reinterpret_cast<PDFJPEG2000ImageData*>(p_user_data);
// Remaining length
OPJ_OFF_T length = static_cast<OPJ_OFF_T>(data->byteArray->size()) - data->position;
if (length < 0)
{
length = 0;
}
if (length > static_cast<OPJ_OFF_T>(p_nb_bytes))
{
length = static_cast<OPJ_OFF_T>(p_nb_bytes);
}
if (length > 0)
{
std::memcpy(p_buffer, data->byteArray->constData() + data->position, length);
data->position += length;
}
if (length == 0)
{
return (OPJ_SIZE_T) - 1;
}
return length;
}
OPJ_BOOL PDFJPEG2000ImageData::seek(OPJ_OFF_T p_nb_bytes, void* p_user_data)
{
PDFJPEG2000ImageData* data = reinterpret_cast<PDFJPEG2000ImageData*>(p_user_data);
if (p_nb_bytes >= data->byteArray->size())
{
return OPJ_FALSE;
}
data->position = p_nb_bytes;
return OPJ_TRUE;
}
OPJ_OFF_T PDFJPEG2000ImageData::skip(OPJ_OFF_T p_nb_bytes, void* p_user_data)
{
PDFJPEG2000ImageData* data = reinterpret_cast<PDFJPEG2000ImageData*>(p_user_data);
// Remaining length
OPJ_OFF_T length = static_cast<OPJ_OFF_T>(data->byteArray->size()) - data->position;
if (length < 0)
{
length = 0;
}
if (length > static_cast<OPJ_OFF_T>(p_nb_bytes))
{
length = static_cast<OPJ_OFF_T>(p_nb_bytes);
}
data->position += length;
return length;
}
PDFAlternateImage PDFAlternateImage::parse(const PDFObjectStorage* storage, PDFObject object)
{
PDFAlternateImage result;
if (const PDFDictionary* dictionary = storage->getDictionaryFromObject(object))
{
PDFDocumentDataLoaderDecorator loader(storage);
result.m_image = loader.readReferenceFromDictionary(dictionary, "Image");
result.m_oc = loader.readReferenceFromDictionary(dictionary, "OC");
result.m_defaultForPrinting = loader.readBooleanFromDictionary(dictionary, "DefaultForPrinting", false);
}
return result;
}
} // namespace pdf