// Copyright (C) 2019-2021 Jakub Melka // // This file is part of PDF4QT. // // PDF4QT is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // with the written consent of the copyright owner, any later version. // // PDF4QT is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with PDF4QT. If not, see . #ifndef PDFUTILS_H #define PDFUTILS_H #include "pdfglobal.h" #include #include #include #include #include #include #include #include #include namespace pdf { /// Class for easy storing of cached item. This class is not thread safe, /// and for this reason, access function are not constant (they can modify the /// object). template class PDFCachedItem { public: explicit inline PDFCachedItem() : m_dirty(true), m_object() { } /// Returns the cached object. If object is dirty, then cached object is refreshed. /// \param holder Holder object, which owns the cached item /// \param function Refresh function template inline const T& get(const H* holder, T(H::* function)(void) const) { if (m_dirty) { m_object = (holder->*function)(); m_dirty = false; } return m_object; } /// Returns the cached object. If object is dirty, then cached object is refreshed. /// \param holder Holder object, which owns the cached item /// \param function Refresh function template inline const T& get(H* holder, T(H::* function)(void)) { if (m_dirty) { m_object = (holder->*function)(); m_dirty = false; } return m_object; } /// Returns the cached object. If object is dirty, then cached object is refreshed. /// \param function Refresh function inline const T& get(const std::function& function) { if (m_dirty) { m_object = function(); m_dirty = false; } return m_object; } /// Invalidates the cached item, so it must be refreshed from the cache next time, /// if it is accessed. inline void dirty() { m_dirty = true; m_object = T(); } /// Returns true, if cache is dirty inline bool isDirty() const { return m_dirty; } private: bool m_dirty; T m_object; }; /// Bit-reader, which can read n-bit unsigned integers from the stream. /// Number of bits can be set in the constructor and is constant. class PDF4QTLIBSHARED_EXPORT PDFBitReader { public: using Value = uint64_t; explicit PDFBitReader(const QByteArray* stream, Value bitsPerComponent); PDFBitReader(const PDFBitReader&) = default; PDFBitReader(PDFBitReader&&) = default; PDFBitReader& operator=(const PDFBitReader&) = default; PDFBitReader& operator=(PDFBitReader&&) = default; /// Returns maximal value of n-bit unsigned integer. Value max() const { return m_maximalValue; } /// Reads single n-bit value from the stream. If stream hasn't enough data, /// then exception is thrown. Value read() { return read(m_bitsPerComponent); } /// Reads single n-bit value from the stream. If stream hasn't enough data, /// then exception is thrown. Value read(Value bits); /// Reads single n-bit value from the stream. If stream hasn't enough data, /// then exception is thrown. State of the stream is not changed, i.e., read /// bits are reverted back. Value look(Value bits) const; /// Seeks the desired position in the data stream. If position can't be seeked, /// then exception is thrown. void seek(qint64 position); /// Skips desired number of bytes void skipBytes(Value bytes); /// Seeks data to the byte boundary (number of processed bits is divisible by 8) void alignToBytes(); /// Returns true, if we are at the end of the data stream (no more data can be read) bool isAtEnd() const; /// Returns position in the data stream (byte position, not bit position, so /// result of this function is sometimes inaccurate) int getPosition() const { return m_position; } /// Reads signed 32-bit integer from the stream int32_t readSignedInt(); /// Reads signed 8-bit integer from the stream int8_t readSignedByte(); /// Reads unsigned 32-bit integer from the stream uint32_t readUnsignedInt() { return read(32); } /// Reads unsigned 16-bit integer from the stream uint16_t readUnsignedWord() { return read(16); } /// Reads unsigned 8-bit integer from the stream uint8_t readUnsignedByte() { return read(8); } /// Return underlying byte stream const QByteArray* getStream() const { return m_stream; } /// Reads substream from current stream. This function works only on byte boundary, /// otherwise exception is thrown. /// \param length Length of the substream. Can be -1, in this case, all remaining data is read. QByteArray readSubstream(int length); private: const QByteArray* m_stream; int m_position; Value m_bitsPerComponent; Value m_maximalValue; Value m_buffer; Value m_bitsInBuffer; }; /// Bit writer class PDFBitWriter { public: using Value = uint64_t; explicit PDFBitWriter(Value bitsPerComponent); /// Writes value to the output stream void write(Value value); /// Finish line - align to byte boundary void finishLine() { flush(true); } /// Returns the result byte array QByteArray takeByteArray() { return qMove(m_outputByteArray); } /// Reserve memory in buffer void reserve(int size) { m_outputByteArray.reserve(size); } private: void flush(bool alignToByteBoundary); QByteArray m_outputByteArray; Value m_bitsPerComponent; Value m_mask; Value m_buffer; Value m_bitsInBuffer; }; /// Simple class guard, for properly saving/restoring new/old value. In the constructor, /// new value is stored in the pointer (old one is being saved), and in the destructor, /// old value is restored. This object assumes, that value is not a null pointer. template class PDFTemporaryValueChange { public: /// Constructor /// \param value Value pointer (must not be a null pointer) /// \param newValue New value to be set to the pointer explicit inline PDFTemporaryValueChange(Value* valuePointer, Value newValue) : m_oldValue(qMove(*valuePointer)), m_value(valuePointer) { *valuePointer = qMove(newValue); } inline ~PDFTemporaryValueChange() { *m_value = qMove(m_oldValue); } private: Value m_oldValue; Value* m_value; }; /// Implements range for range based for cycles template class PDFIntegerRange { public: explicit inline constexpr PDFIntegerRange(T begin, T end) : m_begin(begin), m_end(end) { } struct Iterator : public std::iterator { inline Iterator() : value(T(0)) { } inline Iterator(T value) : value(value) { } inline bool operator==(const Iterator& other) const { return value == other.value; } inline bool operator!=(const Iterator& other) const { return value != other.value; } inline T operator*() const { return value; } inline Iterator& operator+=(ptrdiff_t movement) { value += T(movement); return *this; } inline Iterator& operator-=(ptrdiff_t movement) { value -= T(movement); return *this; } inline Iterator operator+(ptrdiff_t movement) const { return Iterator(value + T(movement)); } inline ptrdiff_t operator-(const Iterator& other) const { return ptrdiff_t(value - other.value); } inline Iterator& operator++() { ++value; return *this; } inline Iterator operator++(int) { Iterator copy(*this); ++value; return copy; } inline Iterator& operator--() { --value; return *this; } inline Iterator operator--(int) { Iterator copy(*this); --value; return copy; } T value = 0; }; Iterator begin() const { return Iterator(m_begin); } Iterator end() const { return Iterator(m_end); } private: T m_begin; T m_end; }; template bool contains(T value, std::initializer_list list) { return (std::find(list.begin(), list.end(), value) != list.end()); } /// Performs linear mapping of value x in interval [x_min, x_max] to the interval [y_min, y_max]. /// \param x Value to be linearly remapped from interval [x_min, x_max] to the interval [y_min, y_max]. /// \param x_min Start of the input interval /// \param x_max End of the input interval /// \param y_min Start of the output interval /// \param y_max End of the output interval static inline constexpr PDFReal interpolate(PDFReal x, PDFReal x_min, PDFReal x_max, PDFReal y_min, PDFReal y_max) { return y_min + (x - x_min) * (y_max - y_min) / (x_max - x_min); } /// Performs linear mapping of value x in interval [x_min, x_max] to the interval [y_min, y_max]. /// \param x Value to be linearly remapped from interval [x_min, x_max] to the interval [y_min, y_max]. /// \param x_min Start of the input interval /// \param x_max End of the input interval /// \param y_min Start of the output interval /// \param y_max End of the output interval static inline constexpr PDFColorComponent interpolateColors(PDFColorComponent x, PDFColorComponent x_min, PDFColorComponent x_max, PDFColorComponent y_min, PDFColorComponent y_max) { return y_min + (x - x_min) * (y_max - y_min) / (x_max - x_min); } inline std::vector convertByteArrayToVector(const QByteArray& data) { return std::vector(reinterpret_cast(data.constData()), reinterpret_cast(data.constData()) + data.size()); } inline const unsigned char* convertByteArrayToUcharPtr(const QByteArray& data) { return reinterpret_cast(data.constData()); } inline unsigned char* convertByteArrayToUcharPtr(QByteArray& data) { return reinterpret_cast(data.data()); } /// This function computes ceil of log base 2 of value. The algorithm is taken /// from: http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn. /// License for this function is public domain. inline constexpr uint8_t log2ceil(uint32_t value) { const uint32_t originalValue = value; constexpr uint8_t MULTIPLY_DE_BRUIJN_BIT_POSITION[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; uint8_t logarithm = MULTIPLY_DE_BRUIJN_BIT_POSITION[static_cast((value * 0x07C4ACDDU) >> 27)]; // Ceil if ((1U << logarithm) < originalValue) { ++logarithm; } return logarithm; } struct PDF4QTLIBSHARED_EXPORT PDFDependentLibraryInfo { Q_DECLARE_TR_FUNCTIONS(pdf::PDFDependentLibraryInfo) public: QString library; QString version; QString license; QString url; static std::vector getLibraryInfo(); }; /// Union-find algorithm, which uses path compression optimization. It can run in time /// O(n + f * (1 + log(n)/log(2 + f/n)), where n is number of unions (resp. size of the /// array) and f is number of find operations. template class PDFUnionFindAlgorithm { public: explicit PDFUnionFindAlgorithm(T size) { m_indices.resize(size, T(0)); std::iota(m_indices.begin(), m_indices.end(), 0); } T find(T index) { // Use path compression optimization. We assume we will not // have long paths, so we will use simple recursion and // not while cycle. if (m_indices[index] != index) { m_indices[index] = find(m_indices[index]); } return m_indices[index]; } void unify(T x, T y) { T xRoot = find(x); T yRoot = find(y); if (xRoot < yRoot) { m_indices[yRoot] = xRoot; } else if (xRoot > yRoot) { m_indices[xRoot] = yRoot; } } private: std::vector m_indices; }; template constexpr bool isIntervalOverlap(T x1_min, T x1_max, T x2_min, T x2_max) { // We have two situations, where intervals doesn't overlap: // 1) |--------| |---------| // x1_min x1_max x2_min x2_max // 2) |--------| |---------| // x2_min x2_max x1_min x1_max if (x1_max < x2_min || x2_max < x1_min) { return false; } return true; } constexpr bool isRectangleHorizontallyOverlapped(const QRectF& r1, const QRectF& r2) { return isIntervalOverlap(r1.left(), r1.right(), r2.left(), r2.right()); } inline QColor invertColor(QColor color) { qreal r = 0.0; qreal g = 0.0; qreal b = 0.0; qreal a = 0.0; color.getRgbF(&r, &g, &b, &a); r = 1.0 - r; g = 1.0 - g; b = 1.0 - b; return QColor::fromRgbF(r, g, b, a); } /// Performs linear interpolation of interval [x1, x2] to interval [y1, y2], /// using formula y = y1 + (x - x1) * (y2 - y1) / (x2 - x1), transformed /// to formula y = k * x + q, where q = y1 - x1 * k and /// k = (y2 - y1) / (x2 - x1). template class PDFLinearInterpolation { public: constexpr inline PDFLinearInterpolation(T x1, T x2, T y1, T y2) : m_k((y2 - y1) / (x2 - x1)), m_q(y1 - x1 * m_k) { } /// Maps value from x interval to y interval constexpr inline T operator()(T x) const { return m_k * x + m_q; } private: T m_k; T m_q; }; /// Fuzzy compares two points, with given tolerance (so, if points are at lower distance /// from each other than squared tolerance, they are considered as same and function returns true). /// \param p1 First point /// \param p2 Second point /// \param squaredTolerance Squared tolerance static inline bool isFuzzyComparedPointsSame(const QPointF& p1, const QPointF& p2, PDFReal squaredTolerance) { QPointF dp = p2 - p1; const qreal squaredDistance = QPointF::dotProduct(dp, dp); return squaredDistance < squaredTolerance; } /// View on the array template class PDFBuffer { public: using value_type = T; using value_ptr = value_type*; using const_value_type = typename std::add_const::type; using const_value_ptr = const_value_type*; using value_ref = value_type&; using const_value_ref = typename std::add_const::type; explicit inline PDFBuffer() : m_begin(nullptr), m_end(nullptr) { } explicit inline PDFBuffer(value_ptr value, size_t size) : m_begin(value), m_end(value + size) { } inline value_ptr begin() { return m_begin; } inline value_ptr end() { return m_end; } inline const_value_ptr begin() const { return m_begin; } inline const_value_ptr end() const { return m_end; } inline const_value_ptr cbegin() const { return m_begin; } inline const_value_ptr cend() const { return m_end; } inline value_ref operator[](size_t index) { return *(m_begin + index); } inline const_value_ref operator[](size_t index) const { return *(m_begin + index); } size_t size() const { return m_end - m_begin; } PDFBuffer resized(size_t newSize) const { Q_ASSERT(newSize <= size()); return PDFBuffer(m_begin, newSize); } private: value_ptr m_begin; value_ptr m_end; }; /// Storage for result of some operation. Stores, if operation was successful, or not and /// also error message, why operation has failed. Can be converted explicitly to bool. class PDFOperationResult { public: inline PDFOperationResult(bool success) : m_success(success) { } inline PDFOperationResult(QString message) : m_success(false), m_errorMessage(qMove(message)) { } explicit operator bool() const { return m_success; } const QString& getErrorMessage() const { return m_errorMessage; } private: bool m_success; QString m_errorMessage; }; template class PDFFlags { public: using Integer = typename std::underlying_type::type; constexpr inline PDFFlags() noexcept = default; constexpr inline PDFFlags(Integer flags) noexcept : m_flags(flags) { } constexpr inline PDFFlags(Enum flag) noexcept : m_flags(flag) { } constexpr inline PDFFlags& operator|=(Integer flags) { m_flags |= flags; return *this; } constexpr inline PDFFlags& operator|=(PDFFlags flags) { m_flags |= flags.m_flags; return *this; } constexpr inline PDFFlags& operator|=(Enum flag) { m_flags |= flag; return *this; } constexpr inline PDFFlags& operator&=(Integer flags) { m_flags &= flags; return *this; } constexpr inline PDFFlags& operator&=(PDFFlags flags) { m_flags &= flags.m_flags; return *this; } constexpr inline PDFFlags& operator&=(Enum flag) { m_flags &= flag; return *this; } constexpr inline PDFFlags& operator^=(Integer flags) { m_flags ^= flags; return *this; } constexpr inline PDFFlags& operator^=(PDFFlags flags) { m_flags ^= flags.m_flags; return *this; } constexpr inline PDFFlags& operator^=(Enum flag) { m_flags ^= flag; return *this; } constexpr inline operator Integer() const { return m_flags; } constexpr inline PDFFlags operator|(Integer flags) const { return PDFFlags(m_flags | flags); } constexpr inline PDFFlags operator|(PDFFlags flags) const { return PDFFlags(m_flags | flags.m_flags); } constexpr inline PDFFlags operator|(Enum flag) const { return PDFFlags(m_flags | flag); } constexpr inline PDFFlags operator&(Integer flags) const { return PDFFlags(m_flags & flags); } constexpr inline PDFFlags operator&(PDFFlags flags) const { return PDFFlags(m_flags & flags.m_flags); } constexpr inline PDFFlags operator&(Enum flag) const { return PDFFlags(m_flags & flag); } constexpr inline PDFFlags operator^(Integer flags) const { return PDFFlags(m_flags ^ flags); } constexpr inline PDFFlags operator^(PDFFlags flags) const { return PDFFlags(m_flags ^ flags.m_flags); } constexpr inline PDFFlags operator^(Enum flag) const { return PDFFlags(m_flags ^ flag); } constexpr inline PDFFlags operator~() const { return PDFFlags(~m_flags); } // Explicit bool operator to disallow implicit conversion constexpr inline explicit operator bool() const { return m_flags != 0; } constexpr inline bool operator!() const { return m_flags == 0; } constexpr inline bool testFlag(Enum flag) const { return (m_flags & flag) == flag; } constexpr inline PDFFlags& setFlag(Enum flag, bool on = true) { if (on) { m_flags |= Integer(flag); } else { m_flags &= ~Integer(flag); } return *this; } private: Integer m_flags = Integer(); }; /// Get system information class PDF4QTLIBSHARED_EXPORT PDFSysUtils { public: static QString getUserName(); }; /// Set of closed intervals class PDF4QTLIBSHARED_EXPORT PDFClosedIntervalSet { public: explicit inline PDFClosedIntervalSet() = default; bool operator ==(const PDFClosedIntervalSet&) const = default; using ClosedInterval = std::pair; /// Adds closed interval, where \p low is lower bound /// of the closed interval, and high is upper bound /// of closed interval. /// \param low Lower bound of interval /// \param high Upper bound of interval void addInterval(PDFInteger low, PDFInteger high); /// Adds a single value to the interval (closed interval /// of single value) /// \param value Value void addValue(PDFInteger value) { addInterval(value, value); } /// Merge with other interval set void merge(const PDFClosedIntervalSet& other); /// Returns true, if given closed range is subset of /// this interval set. bool isCovered(PDFInteger low, PDFInteger high); /// Returns sum of interval lengths PDFInteger getTotalLength() const; /// Transforms interval set to readable text QString toText(bool withoutBrackets) const; /// Returns all integers from the range std::vector unfold() const; /// Returns true, if interval set is empty bool isEmpty() const { return m_intervals.empty(); } /// Translates interval set by a given offset /// \param offset Offset void translate(PDFInteger offset); /// Parses text into closed interval set, text should be in form "1,3,4,7,-11,12-,52-53,-", /// where 1,3,4,7 means single pages, -11 means range from \p first to 11, 12- means range /// from 12 to \p last, and 52-53 means closed interval [52, 53]. If text is not in this form, /// then empty interval set is returned and if \p errorMessage is specified, then error message /// is stored here. Parsed numbers must be equal or greater than \p first and lower or equal /// to \p last, if overflow occurs, then error message is returned. /// \param[in] first Lower bound of work range /// \param[in] last Upper bound of work range /// \param[in] text Text /// \param[out] errorMessage Error message static PDFClosedIntervalSet parse(PDFInteger first, PDFInteger last, const QString& text, QString* errorMessage); private: /// Normalizes interval ranges - merges adjacent intervals void normalize(); /// Returns true, if interval overlaps, or is adjacent to the other one /// \param a First interval /// \param b Second interval static bool overlapsOrAdjacent(ClosedInterval a, ClosedInterval b); std::vector m_intervals; }; template QDataStream& operator>>(QDataStream& stream, std::vector& vector) { typename std::vector::size_type size = 0; stream >> size; vector.resize(size); for (T& item : vector) { stream >> item; } return stream; } template QDataStream& operator<<(QDataStream& stream, const std::vector& vector) { stream << vector.size(); for (const T& item : vector) { stream << item; } return stream; } template QDataStream& operator>>(QDataStream& stream, std::array& array) { typename std::array::size_type size = 0; stream >> size; for (size_t i = 0; i < size; ++i) { if (i < array.size()) { stream >> array[i]; } else { T item; stream >> item; } } // If array size was changed, then fill in empty objects for (size_t i = size; i < array.size(); ++i) { array[i] = T(); } return stream; } template QDataStream& operator<<(QDataStream& stream, const std::array& array) { stream << array.size(); for (const T& item : array) { stream << item; } return stream; } template QDataStream& operator>>(QDataStream& stream, std::set& set) { typename std::set::size_type size = 0; stream >> size; for (size_t i = 0; i < size; ++i) { T item; stream >> item; set.insert(set.end(), qMove(item)); } return stream; } template QDataStream& operator<<(QDataStream& stream, const std::set& set) { stream << set.size(); for (const T& item : set) { stream << item; } return stream; } /// Color scale represents hot-to-cold color scale. It maps value /// to the color from blue trough green to red. class PDF4QTLIBSHARED_EXPORT PDFColorScale { public: explicit PDFColorScale(); /// Creates a new color scale for defined range /// \param min Lower bound of a scale range /// \param max Upper bound of a scale range explicit PDFColorScale(PDFReal min, PDFReal max); /// Map value to the color. If value is outside of the range, it /// is clamped to fit in the range. /// \param value Value QColor map(PDFReal value) const; /// Returns color values of the scale const std::vector getColorScales() const { return m_colorScales; } PDFReal getMin() const { return m_min; } PDFReal getMax() const { return m_max; } /// Returns true, if color scale is valid bool isValid() const { return m_min < m_max && !m_colorScales.empty(); } private: std::vector m_colorScales; PDFReal m_min; PDFReal m_max; }; } // namespace pdf #endif // PDFUTILS_H