// Copyright (C) 2019-2020 Jakub Melka // // This file is part of PdfForQt. // // PdfForQt is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // PdfForQt is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with PDFForQt. If not, see . #include "pdfccittfaxdecoder.h" #include "pdfexception.h" namespace pdf { template constexpr uint8_t operator "" _bitlength() { return sizeof...(Digits); } enum CCITT_2D_Code_Mode { Pass, Horizontal, Vertical_3L, Vertical_2L, Vertical_1L, Vertical_0, Vertical_1R, Vertical_2R, Vertical_3R, Invalid }; struct PDFCCITT2DModeInfo { CCITT_2D_Code_Mode mode; uint16_t code; uint8_t bits; }; static constexpr uint8_t MAX_2D_MODE_BIT_LENGTH = 7; static constexpr PDFCCITT2DModeInfo CCITT_2D_CODE_MODES[] = { { Pass, 0b0001, 0001_bitlength }, { Horizontal, 0b001, 001_bitlength }, { Vertical_3L, 0b0000010, 0000010_bitlength }, { Vertical_2L, 0b000010, 000010_bitlength }, { Vertical_1L, 0b010, 010_bitlength }, { Vertical_0, 0b1, 1_bitlength }, { Vertical_1R, 0b011, 011_bitlength }, { Vertical_2R, 0b000011, 000011_bitlength }, { Vertical_3R, 0b0000011, 0000011_bitlength } }; struct PDFCCITTCode { uint16_t length; uint16_t code; uint8_t bits; }; static constexpr uint8_t MAX_CODE_BIT_LENGTH = 12; static constexpr PDFCCITTCode CCITT_WHITE_CODES[] = { // Terminating white codes { 0, 0b00110101, 00110101_bitlength }, { 1, 0b000111, 000111_bitlength }, { 2, 0b0111, 0111_bitlength }, { 3, 0b1000, 1000_bitlength }, { 4, 0b1011, 1011_bitlength }, { 5, 0b1100, 1100_bitlength }, { 6, 0b1110, 1110_bitlength }, { 7, 0b1111, 1111_bitlength }, { 8, 0b10011, 10011_bitlength }, { 9, 0b10100, 10100_bitlength }, { 10, 0b00111, 00111_bitlength }, { 11, 0b01000, 01000_bitlength }, { 12, 0b001000, 001000_bitlength }, { 13, 0b000011, 000011_bitlength }, { 14, 0b110100, 110100_bitlength }, { 15, 0b110101, 110101_bitlength }, { 16, 0b101010, 101010_bitlength }, { 17, 0b101011, 101011_bitlength }, { 18, 0b0100111, 0100111_bitlength }, { 19, 0b0001100, 0001100_bitlength }, { 20, 0b0001000, 0001000_bitlength }, { 21, 0b0010111, 0010111_bitlength }, { 22, 0b0000011, 0000011_bitlength }, { 23, 0b0000100, 0000100_bitlength }, { 24, 0b0101000, 0101000_bitlength }, { 25, 0b0101011, 0101011_bitlength }, { 26, 0b0010011, 0010011_bitlength }, { 27, 0b0100100, 0100100_bitlength }, { 28, 0b0011000, 0011000_bitlength }, { 29, 0b00000010, 00000010_bitlength }, { 30, 0b00000011, 00000011_bitlength }, { 31, 0b00011010, 00011010_bitlength }, { 32, 0b00011011, 00011011_bitlength }, { 33, 0b00010010, 00010010_bitlength }, { 34, 0b00010011, 00010011_bitlength }, { 35, 0b00010100, 00010100_bitlength }, { 36, 0b00010101, 00010101_bitlength }, { 37, 0b00010110, 00010110_bitlength }, { 38, 0b00010111, 00010111_bitlength }, { 39, 0b00101000, 00101000_bitlength }, { 40, 0b00101001, 00101001_bitlength }, { 41, 0b00101010, 00101010_bitlength }, { 42, 0b00101011, 00101011_bitlength }, { 43, 0b00101100, 00101100_bitlength }, { 44, 0b00101101, 00101101_bitlength }, { 45, 0b00000100, 00000100_bitlength }, { 46, 0b00000101, 00000101_bitlength }, { 47, 0b00001010, 00001010_bitlength }, { 48, 0b00001011, 00001011_bitlength }, { 49, 0b01010010, 01010010_bitlength }, { 50, 0b01010011, 01010011_bitlength }, { 51, 0b01010100, 01010100_bitlength }, { 52, 0b01010101, 01010101_bitlength }, { 53, 0b00100100, 00100100_bitlength }, { 54, 0b00100101, 00100101_bitlength }, { 55, 0b01011000, 01011000_bitlength }, { 56, 0b01011001, 01011001_bitlength }, { 57, 0b01011010, 01011010_bitlength }, { 58, 0b01011011, 01011011_bitlength }, { 59, 0b01001010, 01001010_bitlength }, { 60, 0b01001011, 01001011_bitlength }, { 61, 0b00110010, 00110010_bitlength }, { 62, 0b00110011, 00110011_bitlength }, { 63, 0b00110100, 00110100_bitlength }, // Make up white codes - doesn't terminate { 64, 0b11011, 11011_bitlength }, { 128, 0b10010, 10010_bitlength }, { 192, 0b010111, 010111_bitlength }, { 256, 0b0110111, 0110111_bitlength }, { 320, 0b00110110, 00110110_bitlength }, { 384, 0b00110111, 00110111_bitlength }, { 448, 0b01100100, 01100100_bitlength }, { 512, 0b01100101, 01100101_bitlength }, { 576, 0b01101000, 01101000_bitlength }, { 640, 0b01100111, 01100111_bitlength }, { 704, 0b011001100, 011001100_bitlength }, { 768, 0b011001101, 011001101_bitlength }, { 832, 0b011010010, 011010010_bitlength }, { 896, 0b011010011, 011010011_bitlength }, { 960, 0b011010100, 011010100_bitlength }, { 1024, 0b011010101, 011010101_bitlength }, { 1088, 0b011010110, 011010110_bitlength }, { 1152, 0b011010111, 011010111_bitlength }, { 1216, 0b011011000, 011011000_bitlength }, { 1280, 0b011011001, 011011001_bitlength }, { 1344, 0b011011010, 011011010_bitlength }, { 1408, 0b011011011, 011011011_bitlength }, { 1472, 0b010011000, 010011000_bitlength }, { 1536, 0b010011001, 010011001_bitlength }, { 1600, 0b010011010, 010011010_bitlength }, { 1664, 0b011000, 011000_bitlength }, { 1728, 0b010011011, 010011011_bitlength }, { 1792, 0b00000001000, 00000001000_bitlength }, { 1856, 0b00000001100, 00000001100_bitlength }, { 1920, 0b00000001101, 00000001101_bitlength }, { 1984, 0b000000010010, 000000010010_bitlength }, { 2048, 0b000000010011, 000000010011_bitlength }, { 2112, 0b000000010100, 000000010100_bitlength }, { 2176, 0b000000010101, 000000010101_bitlength }, { 2240, 0b000000010110, 000000010110_bitlength }, { 2304, 0b000000010111, 000000010111_bitlength }, { 2368, 0b000000011100, 000000011100_bitlength }, { 2432, 0b000000011101, 000000011101_bitlength }, { 2496, 0b000000011110, 000000011110_bitlength }, { 2560, 0b000000011111, 000000011111_bitlength } }; static constexpr PDFCCITTCode CCITT_BLACK_CODES[] = { // Terminating black codes { 0, 0b0000110111, 0000110111_bitlength }, { 1, 0b010, 010_bitlength }, { 2, 0b11, 11_bitlength }, { 3, 0b10, 10_bitlength }, { 4, 0b011, 011_bitlength }, { 5, 0b0011, 0011_bitlength }, { 6, 0b0010, 0010_bitlength }, { 7, 0b00011, 00011_bitlength }, { 8, 0b000101, 000101_bitlength }, { 9, 0b000100, 000100_bitlength }, { 10, 0b0000100, 0000100_bitlength }, { 11, 0b0000101, 0000101_bitlength }, { 12, 0b0000111, 0000111_bitlength }, { 13, 0b00000100, 00000100_bitlength }, { 14, 0b00000111, 00000111_bitlength }, { 15, 0b000011000, 000011000_bitlength }, { 16, 0b0000010111, 0000010111_bitlength }, { 17, 0b0000011000, 0000011000_bitlength }, { 18, 0b0000001000, 0000001000_bitlength }, { 19, 0b00001100111, 00001100111_bitlength }, { 20, 0b00001101000, 00001101000_bitlength }, { 21, 0b00001101100, 00001101100_bitlength }, { 22, 0b00000110111, 00000110111_bitlength }, { 23, 0b00000101000, 00000101000_bitlength }, { 24, 0b00000010111, 00000010111_bitlength }, { 25, 0b00000011000, 00000011000_bitlength }, { 26, 0b000011001010, 000011001010_bitlength }, { 27, 0b000011001011, 000011001011_bitlength }, { 28, 0b000011001100, 000011001100_bitlength }, { 29, 0b000011001101, 000011001101_bitlength }, { 30, 0b000001101000, 000001101000_bitlength }, { 31, 0b000001101001, 000001101001_bitlength }, { 32, 0b000001101010, 000001101010_bitlength }, { 33, 0b000001101011, 000001101011_bitlength }, { 34, 0b000011010010, 000011010010_bitlength }, { 35, 0b000011010011, 000011010011_bitlength }, { 36, 0b000011010100, 000011010100_bitlength }, { 37, 0b000011010101, 000011010101_bitlength }, { 38, 0b000011010110, 000011010110_bitlength }, { 39, 0b000011010111, 000011010111_bitlength }, { 40, 0b000001101100, 000001101100_bitlength }, { 41, 0b000001101101, 000001101101_bitlength }, { 42, 0b000011011010, 000011011010_bitlength }, { 43, 0b000011011011, 000011011011_bitlength }, { 44, 0b000001010100, 000001010100_bitlength }, { 45, 0b000001010101, 000001010101_bitlength }, { 46, 0b000001010110, 000001010110_bitlength }, { 47, 0b000001010111, 000001010111_bitlength }, { 48, 0b000001100100, 000001100100_bitlength }, { 49, 0b000001100101, 000001100101_bitlength }, { 50, 0b000001010010, 000001010010_bitlength }, { 51, 0b000001010011, 000001010011_bitlength }, { 52, 0b000000100100, 000000100100_bitlength }, { 53, 0b000000110111, 000000110111_bitlength }, { 54, 0b000000111000, 000000111000_bitlength }, { 55, 0b000000100111, 000000100111_bitlength }, { 56, 0b000000101000, 000000101000_bitlength }, { 57, 0b000001011000, 000001011000_bitlength }, { 58, 0b000001011001, 000001011001_bitlength }, { 59, 0b000000101011, 000000101011_bitlength }, { 60, 0b000000101100, 000000101100_bitlength }, { 61, 0b000001011010, 000001011010_bitlength }, { 62, 0b000001100110, 000001100110_bitlength }, { 63, 0b000001100111, 000001100111_bitlength }, // Make up white codes - doesn't terminate { 64, 0b0000001111, 0000001111_bitlength }, { 128, 0b000011001000, 000011001000_bitlength }, { 192, 0b000011001001, 000011001001_bitlength }, { 256, 0b000001011011, 000001011011_bitlength }, { 320, 0b000000110011, 000000110011_bitlength }, { 384, 0b000000110100, 000000110100_bitlength }, { 448, 0b000000110101, 000000110101_bitlength }, { 512, 0b0000001101100, 0000001101100_bitlength }, { 576, 0b0000001101101, 0000001101101_bitlength }, { 640, 0b0000001001010, 0000001001010_bitlength }, { 704, 0b0000001001011, 0000001001011_bitlength }, { 768, 0b0000001001100, 0000001001100_bitlength }, { 832, 0b0000001001101, 0000001001101_bitlength }, { 896, 0b0000001110010, 0000001110010_bitlength }, { 960, 0b0000001110011, 0000001110011_bitlength }, { 1024, 0b0000001110100, 0000001110100_bitlength }, { 1088, 0b0000001110101, 0000001110101_bitlength }, { 1152, 0b0000001110110, 0000001110110_bitlength }, { 1216, 0b0000001110111, 0000001110111_bitlength }, { 1280, 0b0000001010010, 0000001010010_bitlength }, { 1344, 0b0000001010011, 0000001010011_bitlength }, { 1408, 0b0000001010100, 0000001010100_bitlength }, { 1472, 0b0000001010101, 0000001010101_bitlength }, { 1536, 0b0000001011010, 0000001011010_bitlength }, { 1600, 0b0000001011011, 0000001011011_bitlength }, { 1664, 0b0000001100100, 0000001100100_bitlength }, { 1728, 0b0000001100101, 0000001100101_bitlength }, { 1792, 0b00000001000, 00000001000_bitlength }, { 1856, 0b00000001100, 00000001100_bitlength }, { 1920, 0b00000001101, 00000001101_bitlength }, { 1984, 0b000000010010, 000000010010_bitlength }, { 2048, 0b000000010011, 000000010011_bitlength }, { 2112, 0b000000010100, 000000010100_bitlength }, { 2176, 0b000000010101, 000000010101_bitlength }, { 2240, 0b000000010110, 000000010110_bitlength }, { 2304, 0b000000010111, 000000010111_bitlength }, { 2368, 0b000000011100, 000000011100_bitlength }, { 2432, 0b000000011101, 000000011101_bitlength }, { 2496, 0b000000011110, 000000011110_bitlength }, { 2560, 0b000000011111, 000000011111_bitlength } }; PDFCCITTFaxDecoder::PDFCCITTFaxDecoder(const QByteArray* stream, const PDFCCITTFaxDecoderParameters& parameters) : m_reader(stream, 1), m_parameters(parameters) { } PDFImageData PDFCCITTFaxDecoder::decode() { PDFBitWriter writer(1); std::vector codingLine; std::vector referenceLine; int row = 0; const size_t lineSize = m_parameters.columns + 2; codingLine.resize(lineSize, m_parameters.columns); referenceLine.resize(lineSize, m_parameters.columns); bool isUsing2DEncoding = m_parameters.K < 0; bool isEndOfLineOccured = m_parameters.hasEndOfLine; codingLine[0] = 0; auto updateIsUsing2DEncoding = [this, &isUsing2DEncoding]() { if (m_parameters.K > 0) { // Mixed encoding isUsing2DEncoding = !m_reader.read(1); } }; isEndOfLineOccured = skipFillAndEOL() || isEndOfLineOccured; updateIsUsing2DEncoding(); while (!m_reader.isAtEnd()) { int a0_index = 0; bool isCurrentPixelBlack = false; if (isUsing2DEncoding) { int b1_index = 0; // 2D encoding while (codingLine[a0_index] < m_parameters.columns) { CCITT_2D_Code_Mode mode = get2DMode(); switch (mode) { case Pass: { // In this mode, we set a0 to the b2 (from reference line). In pass mode, // we do not change pixel color. Why we are adding 2 to the b1_index? // We want to skip both b1, b2, because they will be left of new a0. const size_t b2_index = b1_index + 1; if (b2_index < referenceLine.size()) { addPixels(codingLine, a0_index, referenceLine[b2_index], isCurrentPixelBlack, false); if (referenceLine[b2_index] < m_parameters.columns) { b1_index += 2; if (b1_index >= referenceLine.size()) { throw PDFException(PDFTranslationContext::tr("Invalid pass encoding data in CCITT stream.")); } } } else { throw PDFException(PDFTranslationContext::tr("CCITT b2 index out of range.")); } break; } case Horizontal: { // We scan two sequence length. const int a0a1 = getRunLength(!isCurrentPixelBlack); const int a1a2 = getRunLength(isCurrentPixelBlack); addPixels(codingLine, a0_index, codingLine[a0_index] + a0a1, isCurrentPixelBlack, false); addPixels(codingLine, a0_index, codingLine[a0_index] + a1a2, !isCurrentPixelBlack, false); while (referenceLine[b1_index] <= codingLine[a0_index] && referenceLine[b1_index] < m_parameters.columns) { // We do not want to change the color (b1 should have opposite color of a0, // should be first changing element of reference line right of a0). b1_index += 2; if (b1_index >= referenceLine.size()) { throw PDFException(PDFTranslationContext::tr("Invalid horizontal encoding data in CCITT stream.")); } } break; } case Vertical_3L: case Vertical_2L: case Vertical_1L: case Vertical_0: case Vertical_1R: case Vertical_2R: case Vertical_3R: { const int32_t a1 = static_cast(referenceLine[b1_index]) + mode - static_cast(Vertical_0); if (a1 < 0 || a1 > m_parameters.columns) { throw PDFException(PDFTranslationContext::tr("Invalid vertical encoding data in CCITT stream.")); } const bool isNegativeOffset = mode < Vertical_0; addPixels(codingLine, a0_index, static_cast(a1), isCurrentPixelBlack, isNegativeOffset); isCurrentPixelBlack = !isCurrentPixelBlack; if (codingLine[a0_index] < m_parameters.columns) { // We must upgrade b1 index in such a way that it is first index // of opposite color, than a0 index. If we are using negative offsets, then // current position can move backward, and so we must look for first b1 index, // which is of opposite color, than a0. So we decrease index by 1. But what to do, // if we have b1 index equal to zero? In this case, we add -1 + 2 = 1 index, so we do it in // same way, as positive/zero shift. b1_index += (isNegativeOffset && b1_index > 0) ? -1 : 1; // Why we have this check, if same check is in while cycle? Because if we are adding // to the b1_index, we can go outside of reference line range. if (b1_index >= referenceLine.size()) { throw PDFException(PDFTranslationContext::tr("Invalid vertical encoding data in CCITT stream.")); } while (referenceLine[b1_index] <= codingLine[a0_index] && referenceLine[b1_index] < m_parameters.columns) { // We do not want to change the color (b1 should have opposite color of a0, // should be first changing element of reference line right of a0). b1_index += 2; if (b1_index >= referenceLine.size()) { throw PDFException(PDFTranslationContext::tr("Invalid vertical encoding data in CCITT stream.")); } } } break; } default: Q_ASSERT(false); break; } } } else { // Simple 1D encoding while (codingLine[a0_index] < m_parameters.columns) { const uint32_t sequenceLength = getRunLength(!isCurrentPixelBlack); addPixels(codingLine, a0_index, codingLine[a0_index] + sequenceLength, isCurrentPixelBlack, false); isCurrentPixelBlack = !isCurrentPixelBlack; } } // Write the line to the output buffer isCurrentPixelBlack = false; int index = 0; for (int i = 0; i < m_parameters.columns; ++i) { if (i == codingLine[index]) { isCurrentPixelBlack = !isCurrentPixelBlack; ++index; } writer.write(isCurrentPixelBlack ? 0 : 1); } writer.finishLine(); ++row; // Check if we have reached desired number of rows (and end-of-block mode // is not set). If yes, then break the reading. if (!m_parameters.hasEndOfBlock && row == m_parameters.rows) { // We have reached number of rows, stop reading the data break; } bool foundEndOfLine = false; if (m_parameters.hasEndOfLine) { // End of line is required, try to scan it (until end of stream is reached). while (!m_reader.isAtEnd()) { if (m_reader.look(12) == 1) { m_reader.read(12); foundEndOfLine = true; break; } else { m_reader.read(1); } } } else if (!m_parameters.hasEncodedByteAlign) { // Skip fill zeros and possibly find EOL foundEndOfLine = skipFillAndEOL(); } // If end of line is found, be do not perform align to bytes (end of line // has perference against byte align) if (m_parameters.hasEncodedByteAlign && !foundEndOfLine) { m_reader.alignToBytes(); } if (m_reader.isAtEnd()) { // Have we finished reading? break; } updateIsUsing2DEncoding(); if (m_parameters.hasEndOfBlock) { if (!m_parameters.hasEndOfLine && m_parameters.hasEncodedByteAlign) { // We do not have look for EOL above. We check, if we get end-of-facsimile-block signal. // It consists of two consecutive EOLs (see specification). if (m_reader.look(24) == 0x1001) { // End of block found, stop reading the data break; } } else if (foundEndOfLine) { if (m_reader.look(12) == 1) { // End of block found, stop reading the data break; } } } std::swap(codingLine, referenceLine); std::fill(codingLine.begin(), codingLine.end(), m_parameters.columns); std::fill(std::next(referenceLine.begin(), a0_index + 1), referenceLine.end(), m_parameters.columns); codingLine[0] = 0; } Q_ASSERT(m_parameters.decode.size() == 2); std::vector decode; if (m_parameters.hasBlackIsOne) { decode = { m_parameters.decode[1], m_parameters.decode[0] }; } else { decode = { m_parameters.decode[0], m_parameters.decode[1] }; } return PDFImageData(1, 1, m_parameters.columns, row, (m_parameters.columns + 7) / 8, m_parameters.maskingType, writer.takeByteArray(), { }, qMove(decode), { }); } void PDFCCITTFaxDecoder::skipFill() { // This functions skips zero bits (because codewords have at most 12 bits, // we use 12 bit lookahead to ensure, that we do not broke data sequence). while (!m_reader.isAtEnd() && m_reader.look(12) == 0) { m_reader.read(1); } } bool PDFCCITTFaxDecoder::skipEOL() { if (m_reader.look(12) == 1) { m_reader.read(12); return true; } return false; } void PDFCCITTFaxDecoder::addPixels(std::vector& line, int& a0_index, int a1, bool isCurrentPixelBlack, bool isA1LeftOfA0Allowed) { if (a1 > line[a0_index]) { if (a1 > m_parameters.columns) { throw PDFException(PDFTranslationContext::tr("Invalid index of CCITT changing element a1: a1 = %1, columns = %2.").arg(a1).arg(m_parameters.columns)); } // If we are changing the color, increment a0_index. a0_index == 0 is white, a0_index == 1 is black, etc., // sequence of white and black runs alternates. if ((a0_index & 1) != isCurrentPixelBlack) { ++a0_index; } line[a0_index] = a1; } else if (isA1LeftOfA0Allowed && a1 < line[a0_index]) { // We want to find first index, for which it holds: // a1 > line[a0_index - 1], so if we set line[a0_index] = a1, // then we get a valid increasing sequence. while (a0_index > 0 && a1 <= line[a0_index - 1]) { --a0_index; } line[a0_index] = a1; } } uint32_t PDFCCITTFaxDecoder::getRunLength(bool white) { uint32_t value = 0; while (true) { uint32_t currentValue = 0; if (white) { currentValue = getWhiteCode(); } else { currentValue = getBlackCode(); } value += currentValue; if (currentValue < 64) { break; } } return value; } uint32_t PDFCCITTFaxDecoder::getWhiteCode() { return getCode(CCITT_WHITE_CODES, std::size(CCITT_WHITE_CODES)); } uint32_t PDFCCITTFaxDecoder::getBlackCode() { return getCode(CCITT_BLACK_CODES, std::size(CCITT_BLACK_CODES)); } uint32_t PDFCCITTFaxDecoder::getCode(const PDFCCITTCode* codes, size_t codeCount) { uint32_t code = 0; uint8_t bits = 0; while (bits <= MAX_CODE_BIT_LENGTH) { code = (code << 1) + m_reader.read(1); ++bits; for (size_t i = 0; i < codeCount; ++i) { const PDFCCITTCode& currentCode = codes[i]; if (currentCode.bits == bits && currentCode.code == code) { return currentCode.length; } } } throw PDFException(PDFTranslationContext::tr("Invalid CCITT run length code word.")); return 0; } CCITT_2D_Code_Mode PDFCCITTFaxDecoder::get2DMode() { uint32_t code = 0; uint8_t bits = 0; while (bits <= MAX_2D_MODE_BIT_LENGTH) { code = (code << 1) + m_reader.read(1); ++bits; for (const PDFCCITT2DModeInfo& info : CCITT_2D_CODE_MODES) { if (info.bits == bits && info.code == code) { return info.mode; } } } throw PDFException(PDFTranslationContext::tr("Invalid CCITT 2D mode.")); return Invalid; } } // namespace pdf