// Copyright (C) 2019 Jakub Melka // // This file is part of PdfForQt. // // PdfForQt is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // PdfForQt is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with PDFForQt. If not, see . #include "pdfpattern.h" #include "pdfdocument.h" #include "pdfexception.h" #include "pdfutils.h" #include "pdfcolorspaces.h" #include namespace pdf { PatternType PDFShadingPattern::getType() const { return PatternType::Shading; } ShadingType PDFAxialShading::getShadingType() const { return ShadingType::Axial; } PDFPatternPtr PDFPattern::createPattern(const PDFDictionary* colorSpaceDictionary, const PDFDocument* document, const PDFObject& object) { const PDFObject& dereferencedObject = document->getObject(object); if (dereferencedObject.isDictionary()) { PDFPatternPtr result; const PDFDictionary* patternDictionary = dereferencedObject.getDictionary(); PDFDocumentDataLoaderDecorator loader(document); if (loader.readNameFromDictionary(patternDictionary, "Type") != "Pattern") { throw PDFParserException(PDFTranslationContext::tr("Invalid pattern.")); } const PatternType patternType = static_cast(loader.readIntegerFromDictionary(patternDictionary, "PatternType", static_cast(PatternType::Invalid))); switch (patternType) { case PatternType::Tiling: { // TODO: Implement tiling pattern throw PDFParserException(PDFTranslationContext::tr("Tiling pattern not implemented.")); break; } case PatternType::Shading: { PDFObject patternGraphicState = document->getObject(patternDictionary->get("ExtGState")); QMatrix matrix = loader.readMatrixFromDictionary(patternDictionary, "Matrix", QMatrix()); return createShadingPattern(colorSpaceDictionary, document, patternDictionary->get("Shading"), matrix, patternGraphicState, false); } default: throw PDFParserException(PDFTranslationContext::tr("Invalid pattern.")); } return result; } throw PDFParserException(PDFTranslationContext::tr("Invalid pattern.")); return PDFPatternPtr(); } PDFPatternPtr PDFPattern::createShadingPattern(const PDFDictionary* colorSpaceDictionary, const PDFDocument* document, const PDFObject& shadingObject, const QMatrix& matrix, const PDFObject& patternGraphicState, bool ignoreBackgroundColor) { const PDFObject& dereferencedShadingObject = document->getObject(shadingObject); if (!dereferencedShadingObject.isDictionary()) { throw PDFParserException(PDFTranslationContext::tr("Invalid shading.")); } PDFDocumentDataLoaderDecorator loader(document); const PDFDictionary* shadingDictionary = dereferencedShadingObject.getDictionary(); // Parse common data for all shadings PDFColorSpacePointer colorSpace = PDFAbstractColorSpace::createColorSpace(colorSpaceDictionary, document, shadingDictionary->get("ColorSpace")); QColor backgroundColor; if (!ignoreBackgroundColor) { std::vector backgroundColorValues = loader.readNumberArrayFromDictionary(shadingDictionary, "Background"); if (!backgroundColorValues.empty()) { backgroundColor = colorSpace->getCheckedColor(PDFAbstractColorSpace::convertToColor(backgroundColorValues)); } } QRectF boundingBox = loader.readRectangle(shadingDictionary->get("BBox"), QRectF()); bool antialias = loader.readBooleanFromDictionary(shadingDictionary, "AntiAlias", false); const PDFObject& extendObject = document->getObject(shadingDictionary->get("Extend")); bool extendStart = false; bool extendEnd = false; if (extendObject.isArray()) { const PDFArray* array = extendObject.getArray(); if (array->getCount() != 2) { throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern extends. Expected 2, but %1 provided.").arg(array->getCount())); } extendStart = loader.readBoolean(array->getItem(0), false); extendEnd = loader.readBoolean(array->getItem(1), false); } std::vector functions; const PDFObject& functionsObject = document->getObject(shadingDictionary->get("Function")); if (functionsObject.isArray()) { const PDFArray* functionsArray = functionsObject.getArray(); functions.reserve(functionsArray->getCount()); for (size_t i = 0, functionCount = functionsArray->getCount(); i < functionCount; ++i) { functions.push_back(PDFFunction::createFunction(document, functionsArray->getItem(i))); } } else if (!functionsObject.isNull()) { functions.push_back(PDFFunction::createFunction(document, functionsObject)); } const ShadingType shadingType = static_cast(loader.readIntegerFromDictionary(shadingDictionary, "ShadingType", static_cast(ShadingType::Invalid))); switch (shadingType) { case ShadingType::Axial: { PDFAxialShading* axialShading = new PDFAxialShading(); PDFPatternPtr result(axialShading); std::vector coordinates = loader.readNumberArrayFromDictionary(shadingDictionary, "Coords"); if (coordinates.size() != 4) { throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern coordinates. Expected 4, but %1 provided.").arg(coordinates.size())); } std::vector domain = loader.readNumberArrayFromDictionary(shadingDictionary, "Domain"); if (domain.empty()) { domain = { 0.0, 1.0 }; } if (domain.size() != 2) { throw PDFParserException(PDFTranslationContext::tr("Invalid axial shading pattern domain. Expected 2, but %1 provided.").arg(domain.size())); } // Load items for axial shading axialShading->m_antiAlias = antialias; axialShading->m_backgroundColor = backgroundColor; axialShading->m_colorSpace = colorSpace; axialShading->m_boundingBox = boundingBox; axialShading->m_domainStart = domain[0]; axialShading->m_domainEnd = domain[1]; axialShading->m_startPoint = QPointF(coordinates[0], coordinates[1]); axialShading->m_endPoint = QPointF(coordinates[2], coordinates[3]); axialShading->m_extendStart = extendStart; axialShading->m_extendEnd = extendEnd; axialShading->m_functions = qMove(functions); axialShading->m_matrix = matrix; axialShading->m_patternGraphicState = patternGraphicState; return result; } default: { throw PDFParserException(PDFTranslationContext::tr("Invalid shading pattern type (%1).").arg(static_cast(shadingType))); } } throw PDFParserException(PDFTranslationContext::tr("Invalid shading.")); return PDFPatternPtr(); } PDFMesh PDFAxialShading::createMesh(const PDFMeshQualitySettings& settings) const { PDFMesh mesh; QPointF p1 = settings.userSpaceToDeviceSpaceMatrix.map(m_startPoint); QPointF p2 = settings.userSpaceToDeviceSpaceMatrix.map(m_endPoint); // Strategy: for simplification, we rotate the line clockwise so we will // get the shading axis equal to the x-axis. Then we will determine the shading // area and create mesh according the settings. QLineF line(p1, p2); const double angle = line.angleTo(QLineF(0, 0, 1, 0)); // Matrix p1p2LCS is local coordinate system of line p1-p2. It transforms // points on the line to the global coordinate system. So, point (0, 0) will // map onto p1 and point (length(p1-p2), 0) will map onto p2. QMatrix p1p2LCS; p1p2LCS.translate(p1.x(), p1.y()); p1p2LCS.rotate(angle); QMatrix p1p2GCS = p1p2LCS.inverted(); QPointF p1m = p1p2GCS.map(p1); QPointF p2m = p1p2GCS.map(p2); Q_ASSERT(isZero(p1m.y())); Q_ASSERT(isZero(p2m.y())); Q_ASSERT(p1m.x() <= p2m.x()); QPainterPath meshingArea; meshingArea.addPolygon(p1p2GCS.map(settings.deviceSpaceMeshingArea)); meshingArea.addRect(p1m.x(), p1m.y() - settings.preferredMeshResolution * 0.5, p2m.x() - p1m.x(), settings.preferredMeshResolution); QRectF meshingRectangle = meshingArea.boundingRect(); PDFReal xl = meshingRectangle.left(); PDFReal xr = meshingRectangle.right(); PDFReal yt = meshingRectangle.top(); PDFReal yb = meshingRectangle.bottom(); // Create coordinate array filled with stops, where we will determine the color std::vector xCoords; xCoords.reserve((xr - xl) / settings.minimalMeshResolution + 3); xCoords.push_back(xl); for (PDFReal x = p1m.x(); x <= p2m.x(); x += settings.minimalMeshResolution) { if (!qFuzzyCompare(xCoords.back(), x)) { xCoords.push_back(x); } } if (!qFuzzyCompare(xCoords.back(), xr)) { xCoords.push_back(xr); } const PDFReal tAtStart = m_domainStart; const PDFReal tAtEnd = m_domainEnd; const PDFReal tMin = qMin(tAtStart, tAtEnd); const PDFReal tMax = qMax(tAtStart, tAtEnd); const bool isSingleFunction = m_functions.size() == 1; std::vector colorBuffer(m_colorSpace->getColorComponentCount(), 0.0); auto getColor = [this, isSingleFunction, &colorBuffer](PDFReal t) -> PDFColor { if (isSingleFunction) { PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data(), colorBuffer.data() + colorBuffer.size()); if (!result) { throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage)); } } else { for (size_t i = 0, count = colorBuffer.size(); i < count; ++i) { PDFFunction::FunctionResult result = m_functions.front()->apply(&t, &t + 1, colorBuffer.data() + i, colorBuffer.data() + i + 1); if (!result) { throw PDFRendererException(RenderErrorType::Error, PDFTranslationContext::tr("Error occured during mesh creation of shading: %1").arg(result.errorMessage)); } } } return PDFAbstractColorSpace::convertToColor(colorBuffer); }; // Determine color of each coordinate std::vector> coloredCoordinates; coloredCoordinates.reserve(xCoords.size()); for (PDFReal x : xCoords) { if (x < p1m.x() - PDF_EPSILON && !m_extendStart) { // Move to the next coordinate, this is skipped continue; } if (x > p2m.x() + PDF_EPSILON && !m_extendEnd) { // We are finished no more triangles will occur break; } // Determine current parameter t const PDFReal t = interpolate(x, p1m.x(), p2m.x(), tAtStart, tAtEnd); const PDFReal tBounded = qBound(tMin, t, tMax); const PDFColor color = getColor(tBounded); coloredCoordinates.emplace_back(x, color); } // Filter coordinates according the meshing criteria std::vector> filteredCoordinates; filteredCoordinates.reserve(coloredCoordinates.size()); for (auto it = coloredCoordinates.cbegin(); it != coloredCoordinates.cend(); ++it) { // We will skip this coordinate, if both of meshing criteria have been met: // 1) Color difference is small (lesser than tolerance) // 2) Distance from previous and next point is less than preffered meshing resolution OR colors are equal if (it != coloredCoordinates.cbegin() && std::next(it) != coloredCoordinates.cend()) { auto itNext = std::next(it); const std::pair& prevItem = filteredCoordinates.back(); const std::pair& currentItem = *it; const std::pair& nextItem = *itNext; if (prevItem.second == currentItem.second && currentItem.second == nextItem.second) { // Colors are same, skip the test continue; } if (PDFAbstractColorSpace::isColorEqual(prevItem.second, currentItem.second, settings.tolerance) && PDFAbstractColorSpace::isColorEqual(currentItem.second, nextItem.second, settings.tolerance) && PDFAbstractColorSpace::isColorEqual(prevItem.second, nextItem.second, settings.tolerance) && (nextItem.first - prevItem.first < settings.preferredMeshResolution)) { continue; } } filteredCoordinates.push_back(*it); } if (!filteredCoordinates.empty()) { size_t vertexCount = filteredCoordinates.size() * 2; size_t triangleCount = filteredCoordinates.size() * 2 - 2; if (m_backgroundColor.isValid()) { vertexCount += 8; triangleCount += 4; } mesh.reserve(vertexCount, triangleCount); PDFColor previousColor = filteredCoordinates.front().second; uint32_t topLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yt)); uint32_t bottomLeft = mesh.addVertex(QPointF(filteredCoordinates.front().first, yb)); for (auto it = std::next(filteredCoordinates.cbegin()); it != filteredCoordinates.cend(); ++it) { const std::pair& item = *it; uint32_t topRight = mesh.addVertex(QPointF(item.first, yt)); uint32_t bottomRight = mesh.addVertex(QPointF(item.first, yb)); PDFColor mixedColor = PDFAbstractColorSpace::mixColors(previousColor, item.second, 0.5); QColor color = m_colorSpace->getColor(mixedColor); mesh.addQuad(topLeft, topRight, bottomRight, bottomLeft, color.rgb()); topLeft = topRight; bottomLeft = bottomRight; previousColor = item.second; } } // Create background color triangles // TODO: Create background color for axial shading // Transform mesh to the device space coordinates mesh.transform(p1p2LCS); // Create bounding path if (m_boundingBox.isValid()) { QPainterPath boundingPath; boundingPath.addPolygon(settings.userSpaceToDeviceSpaceMatrix.map(m_boundingBox)); mesh.setBoundingPath(boundingPath); } return mesh; } void PDFMesh::paint(QPainter* painter) const { if (m_triangles.empty()) { return; } painter->save(); painter->setPen(Qt::NoPen); painter->setRenderHint(QPainter::Antialiasing, true); // Set the clipping area, if we have it if (!m_boundingPath.isEmpty()) { painter->setClipPath(m_boundingPath, Qt::IntersectClip); } QColor color; // Draw all triangles for (const Triangle& triangle : m_triangles) { if (color != triangle.color) { painter->setPen(QColor(triangle.color)); painter->setBrush(QBrush(triangle.color, Qt::SolidPattern)); color = triangle.color; } std::array triangleCorners = { m_vertices[triangle.v1], m_vertices[triangle.v2], m_vertices[triangle.v3] }; painter->drawConvexPolygon(triangleCorners.data(), static_cast(triangleCorners.size())); } painter->restore(); } void PDFMesh::transform(const QMatrix& matrix) { for (QPointF& vertex : m_vertices) { vertex = matrix.map(vertex); } m_boundingPath = matrix.map(m_boundingPath); } void PDFMeshQualitySettings::initDefaultResolution() { // We will take 0.5% percent of device space meshing area as minimal resolution (it is ~1.5 mm for // A4 page) and default resolution 4x number of that. Q_ASSERT(deviceSpaceMeshingArea.isValid()); PDFReal size = qMax(deviceSpaceMeshingArea.width(), deviceSpaceMeshingArea.height()); minimalMeshResolution = size * 0.005; preferredMeshResolution = minimalMeshResolution * 4; } } // namespace pdf