// Copyright (C) 2019-2020 Jakub Melka // // This file is part of Pdf4Qt. // // Pdf4Qt is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Pdf4Qt is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with Pdf4Qt. If not, see . #ifndef PDFFLATARRAY_H #define PDFFLATARRAY_H #include #include #include #include namespace pdf { /// This represents a fast array, consisting of "fast" block of fixed size \p FlatSize, /// and "slow" block of variable size. Usually, this array is used when vast majority /// of usage size is below FlatSize, only minority is above FlatSize. Typical example /// of use of this class: /// /// We have colors in PDF, which can have usually 1, 3 or 4 color components. But in some /// rare cases, we have much more components, for example for DeviceN color spaces. /// For this reason, we will set FlatSize to 4 (so Gray, RGB and CMYK colors will not /// use slow "variable" part). template class PDFFlatArray { public: PDFFlatArray() : m_flatBlock(), m_flatBlockItemCount(0), m_variableBlock() { } template::type = 0> inline PDFFlatArray(Arguments... arguments) : m_flatBlock({ arguments... }), m_flatBlockItemCount(sizeof...(Arguments)), m_variableBlock() { } using value_type = T; /// Returns the size of the array size_t size() const { return getFlatBlockSize() + m_variableBlock.size(); } /// Returns true, if array is empty bool empty() const { return size() == 0; } template const T& get() const { if constexpr (index < FlatSize) { return m_flatBlock[size]; } else { return m_variableBlock[size - FlatSize]; } } template T& get() { if constexpr (index < FlatSize) { return m_flatBlock[size]; } else { return m_variableBlock[size - FlatSize]; } } const T& operator[] (size_t index) const { Q_ASSERT(index < size()); if (index < FlatSize) { return m_flatBlock[index]; } else { return m_variableBlock[index - FlatSize]; } } T& operator[] (size_t index) { Q_ASSERT(index < size()); if (index < FlatSize) { return m_flatBlock[index]; } else { return m_variableBlock[index - FlatSize]; } } void clear() { m_flatBlockItemCount = 0; m_variableBlock.clear(); } void push_back(T object) { if (m_flatBlockItemCount < m_flatBlock.size()) { m_flatBlock[m_flatBlockItemCount++] = std::move(object); } else { m_variableBlock.emplace_back(std::move(object)); } } void resize(std::size_t size) { if (size <= FlatSize) { m_flatBlockItemCount = size; m_variableBlock.clear(); } else { m_flatBlockItemCount = FlatSize; m_variableBlock.resize(size - FlatSize); } } /// Returns the last element of the array inline const T& back() const { return m_variableBlock.empty() ? m_flatBlock[m_flatBlockItemCount - 1] : m_variableBlock.back(); } /// Erases the last element from the array inline void pop_back() { resize(size() - 1); } bool operator==(const PDFFlatArray& other) const { const size_t size = this->size(); if (size != other.size()) { return false; } for (size_t i = 0; i < size; ++i) { if ((*this)[i] != other[i]) { return false; } } return true; } private: size_t getFlatBlockSize() const { return m_flatBlockItemCount; } std::array m_flatBlock; size_t m_flatBlockItemCount; ///< Number of items in the flat block std::vector m_variableBlock; }; } // namespace pdf #endif // PDFFLATARRAY_H