mirror of
https://github.com/JakubMelka/PDF4QT.git
synced 2025-01-18 19:39:48 +01:00
Tensor meshing, first part
This commit is contained in:
parent
64ae2c7fea
commit
f3f0edffe5
@ -1678,6 +1678,170 @@ void PDFGouradTriangleShading::addSubdividedTriangles(const PDFMeshQualitySettin
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
QPointF PDFTensorPatch::getValue(PDFReal u, PDFReal v) const
|
||||||
|
{
|
||||||
|
return getValue(u, v, 0, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
QPointF PDFTensorPatch::getValue(PDFReal u, PDFReal v, int derivativeOrderU, int derivativeOrderV) const
|
||||||
|
{
|
||||||
|
QPointF result;
|
||||||
|
|
||||||
|
for (int i = 0; i < 3; ++i)
|
||||||
|
{
|
||||||
|
for (int j = 0; j < 3; ++j)
|
||||||
|
{
|
||||||
|
return m_P[i][j] * B(i, u, derivativeOrderU) * B(j, v, derivativeOrderV);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
PDFReal PDFTensorPatch::getCurvature_u(PDFReal u, PDFReal v) const
|
||||||
|
{
|
||||||
|
QPointF dSdu = getDerivative_u(u, v);
|
||||||
|
QPointF dSduu = getDerivative_uu(u, v);
|
||||||
|
|
||||||
|
PDFReal squaredLengthOfdSdu = QPointF::dotProduct(dSdu, dSdu);
|
||||||
|
|
||||||
|
if (qFuzzyIsNull(squaredLengthOfdSdu))
|
||||||
|
{
|
||||||
|
// We assume, that curvature, due to zero length of the tangent vector, is also zero
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Well known formula, how to compute curvature of curve f(x):
|
||||||
|
// K = ( df/dx * df/dyy - df/dxx * df/dy ) / ( (df/dx)^2 + (df/dy)^2 ) ^ (3/2)
|
||||||
|
PDFReal curvature = std::fabs(dSdu.x() * dSduu.y() - dSdu.y() * dSduu.x()) / std::pow(squaredLengthOfdSdu, 1.5);
|
||||||
|
return curvature;
|
||||||
|
}
|
||||||
|
|
||||||
|
PDFReal PDFTensorPatch::getCurvature_v(PDFReal u, PDFReal v) const
|
||||||
|
{
|
||||||
|
QPointF dSdv = getDerivative_v(u, v);
|
||||||
|
QPointF dSdvv = getDerivative_vv(u, v);
|
||||||
|
|
||||||
|
PDFReal squaredLengthOfdSdv = QPointF::dotProduct(dSdv, dSdv);
|
||||||
|
|
||||||
|
if (qFuzzyIsNull(squaredLengthOfdSdv))
|
||||||
|
{
|
||||||
|
// We assume, that curvature, due to zero length of the tangent vector, is also zero
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Well known formula, how to compute curvature of curve f(x):
|
||||||
|
// K = ( df/dx * df/dyy - df/dxx * df/dy ) / ( (df/dx)^2 + (df/dy)^2 ) ^ (3/2)
|
||||||
|
PDFReal curvature = std::fabs(dSdv.x() * dSdvv.y() - dSdv.y() * dSdvv.x()) / std::pow(squaredLengthOfdSdv, 1.5);
|
||||||
|
return curvature;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr PDFReal PDFTensorPatch::B(int index, PDFReal t, int derivativeOrder)
|
||||||
|
{
|
||||||
|
switch (index)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
return B0(t, derivativeOrder);
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
return B1(t, derivativeOrder);
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
return B2(t, derivativeOrder);
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
return B3(t, derivativeOrder);
|
||||||
|
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::numeric_limits<PDFReal>::signaling_NaN();
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr PDFReal PDFTensorPatch::B0(PDFReal t, int derivative)
|
||||||
|
{
|
||||||
|
switch (derivative)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
return pow3(1.0 - t);
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
return -3.0 * pow2(1.0 - t);
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
return 6.0 * (1.0 - t);
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
return -6.0;
|
||||||
|
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::numeric_limits<PDFReal>::signaling_NaN();
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr PDFReal PDFTensorPatch::B1(PDFReal t, int derivative)
|
||||||
|
{
|
||||||
|
switch (derivative)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
return 3.0 * t * pow2(1.0 - t);
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
return 9.0 * pow2(t) - 12.0 * t + 3.0;
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
return 18.0 * t - 12.0;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
return 18.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::numeric_limits<PDFReal>::signaling_NaN();
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr PDFReal PDFTensorPatch::B2(PDFReal t, int derivative)
|
||||||
|
{
|
||||||
|
switch (derivative)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
return 3.0 * pow2(t) * (1.0 - t);
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
return -9.0 * pow2(t) + 6.0 * t;
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
return -18.0 * t + 6.0;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
return -18.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::numeric_limits<PDFReal>::signaling_NaN();
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr PDFReal PDFTensorPatch::B3(PDFReal t, int derivative)
|
||||||
|
{
|
||||||
|
switch (derivative)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
return pow3(t);
|
||||||
|
|
||||||
|
case 1:
|
||||||
|
return 3.0 * pow2(t);
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
return 6.0 * t;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
return 6.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::numeric_limits<PDFReal>::signaling_NaN();
|
||||||
|
}
|
||||||
|
|
||||||
// TODO: Apply graphic state of the pattern
|
// TODO: Apply graphic state of the pattern
|
||||||
// TODO: Implement settings of meshing in the settings dialog
|
// TODO: Implement settings of meshing in the settings dialog
|
||||||
|
|
||||||
|
@ -370,6 +370,104 @@ private:
|
|||||||
PDFInteger m_verticesPerRow = 0;
|
PDFInteger m_verticesPerRow = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class PDFTensorPatch
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using PointMatrix = std::array<std::array<QPointF, 4>, 4>;
|
||||||
|
|
||||||
|
explicit inline PDFTensorPatch(PointMatrix P) : m_P(P) { }
|
||||||
|
|
||||||
|
/// Calculates value at point in the patch.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
QPointF getValue(PDFReal u, PDFReal v) const;
|
||||||
|
|
||||||
|
/// Calculates value at point in the patch, possibly derivation, if derivation
|
||||||
|
/// variables are positive.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param derivativeOrderU Derivation order in direction u (0 means no derivation)
|
||||||
|
/// \param derivativeOrderV Derivation order in direction v (0 means no derivation)
|
||||||
|
QPointF getValue(PDFReal u, PDFReal v, int derivativeOrderU, int derivativeOrderV) const;
|
||||||
|
|
||||||
|
/// Calculates first derivate in the surface, in the direction of variable u.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
QPointF getDerivative_u(PDFReal u, PDFReal v) const { return getValue(u, v, 1, 0); }
|
||||||
|
|
||||||
|
/// Calculates second derivate in the surface, in the direction of variable u.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
QPointF getDerivative_uu(PDFReal u, PDFReal v) const { return getValue(u, v, 2, 0); }
|
||||||
|
|
||||||
|
/// Calculates first derivate in the surface, in the direction of variable v.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
QPointF getDerivative_v(PDFReal u, PDFReal v) const { return getValue(u, v, 0, 1); }
|
||||||
|
|
||||||
|
/// Calculates second derivate in the surface, in the direction of variable v.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
QPointF getDerivative_vv(PDFReal u, PDFReal v) const { return getValue(u, v, 0, 2); }
|
||||||
|
|
||||||
|
/// Calculates curvature of the given point in the surface, in the direction of u.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
PDFReal getCurvature_u(PDFReal u, PDFReal v) const;
|
||||||
|
|
||||||
|
/// Calculates curvature of the given point in the surface, in the direction of v.
|
||||||
|
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||||
|
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||||
|
PDFReal getCurvature_v(PDFReal u, PDFReal v) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
/// Computes Bernstein polynomial B0, B1, B2, B3, for parameter t.
|
||||||
|
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||||
|
/// otherwise it computes value of the derivation of Bx, up to degree 3
|
||||||
|
/// derivation.
|
||||||
|
/// \param index Index of polynomial, from 0 to 3 (B0, B1, B2, B3)
|
||||||
|
/// \param t Parameter of polynomial function
|
||||||
|
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||||
|
static constexpr PDFReal B(int index, PDFReal t, int derivativeOrder);
|
||||||
|
|
||||||
|
/// Computes Bernstein polynomial B0 for parameter t.
|
||||||
|
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||||
|
/// otherwise it computes value of the derivation of B0, up to degree 3
|
||||||
|
/// derivation.
|
||||||
|
/// \param t Parameter of polynomial function
|
||||||
|
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||||
|
static constexpr PDFReal B0(PDFReal t, int derivative);
|
||||||
|
|
||||||
|
/// Computes Bernstein polynomial B1 for parameter t.
|
||||||
|
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||||
|
/// otherwise it computes value of the derivation of B1, up to degree 3
|
||||||
|
/// derivation.
|
||||||
|
/// \param t Parameter of polynomial function
|
||||||
|
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||||
|
static constexpr PDFReal B1(PDFReal t, int derivative);
|
||||||
|
|
||||||
|
/// Computes Bernstein polynomial B2 for parameter t.
|
||||||
|
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||||
|
/// otherwise it computes value of the derivation of B2, up to degree 3
|
||||||
|
/// derivation.
|
||||||
|
/// \param t Parameter of polynomial function
|
||||||
|
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||||
|
static constexpr PDFReal B2(PDFReal t, int derivative);
|
||||||
|
|
||||||
|
/// Computes Bernstein polynomial B3 for parameter t.
|
||||||
|
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||||
|
/// otherwise it computes value of the derivation of B3, up to degree 3
|
||||||
|
/// derivation.
|
||||||
|
/// \param t Parameter of polynomial function
|
||||||
|
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||||
|
static constexpr PDFReal B3(PDFReal t, int derivative);
|
||||||
|
|
||||||
|
static constexpr PDFReal pow2(PDFReal x) { return x * x; }
|
||||||
|
static constexpr PDFReal pow3(PDFReal x) { return x * x * x; }
|
||||||
|
|
||||||
|
PointMatrix m_P;
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace pdf
|
} // namespace pdf
|
||||||
|
|
||||||
#endif // PDFPATTERN_H
|
#endif // PDFPATTERN_H
|
||||||
|
Loading…
Reference in New Issue
Block a user