mirror of
https://github.com/JakubMelka/PDF4QT.git
synced 2025-06-05 21:59:17 +02:00
Tensor meshing, first part
This commit is contained in:
@ -370,6 +370,104 @@ private:
|
||||
PDFInteger m_verticesPerRow = 0;
|
||||
};
|
||||
|
||||
class PDFTensorPatch
|
||||
{
|
||||
public:
|
||||
using PointMatrix = std::array<std::array<QPointF, 4>, 4>;
|
||||
|
||||
explicit inline PDFTensorPatch(PointMatrix P) : m_P(P) { }
|
||||
|
||||
/// Calculates value at point in the patch.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
QPointF getValue(PDFReal u, PDFReal v) const;
|
||||
|
||||
/// Calculates value at point in the patch, possibly derivation, if derivation
|
||||
/// variables are positive.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
/// \param derivativeOrderU Derivation order in direction u (0 means no derivation)
|
||||
/// \param derivativeOrderV Derivation order in direction v (0 means no derivation)
|
||||
QPointF getValue(PDFReal u, PDFReal v, int derivativeOrderU, int derivativeOrderV) const;
|
||||
|
||||
/// Calculates first derivate in the surface, in the direction of variable u.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
QPointF getDerivative_u(PDFReal u, PDFReal v) const { return getValue(u, v, 1, 0); }
|
||||
|
||||
/// Calculates second derivate in the surface, in the direction of variable u.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
QPointF getDerivative_uu(PDFReal u, PDFReal v) const { return getValue(u, v, 2, 0); }
|
||||
|
||||
/// Calculates first derivate in the surface, in the direction of variable v.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
QPointF getDerivative_v(PDFReal u, PDFReal v) const { return getValue(u, v, 0, 1); }
|
||||
|
||||
/// Calculates second derivate in the surface, in the direction of variable v.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
QPointF getDerivative_vv(PDFReal u, PDFReal v) const { return getValue(u, v, 0, 2); }
|
||||
|
||||
/// Calculates curvature of the given point in the surface, in the direction of u.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
PDFReal getCurvature_u(PDFReal u, PDFReal v) const;
|
||||
|
||||
/// Calculates curvature of the given point in the surface, in the direction of v.
|
||||
/// \param u Horizontal coordinate of the patch, must be in range [0, 1]
|
||||
/// \param v Vertical coordinate of the patch, must be in range [0, 1]
|
||||
PDFReal getCurvature_v(PDFReal u, PDFReal v) const;
|
||||
|
||||
private:
|
||||
/// Computes Bernstein polynomial B0, B1, B2, B3, for parameter t.
|
||||
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||
/// otherwise it computes value of the derivation of Bx, up to degree 3
|
||||
/// derivation.
|
||||
/// \param index Index of polynomial, from 0 to 3 (B0, B1, B2, B3)
|
||||
/// \param t Parameter of polynomial function
|
||||
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||
static constexpr PDFReal B(int index, PDFReal t, int derivativeOrder);
|
||||
|
||||
/// Computes Bernstein polynomial B0 for parameter t.
|
||||
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||
/// otherwise it computes value of the derivation of B0, up to degree 3
|
||||
/// derivation.
|
||||
/// \param t Parameter of polynomial function
|
||||
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||
static constexpr PDFReal B0(PDFReal t, int derivative);
|
||||
|
||||
/// Computes Bernstein polynomial B1 for parameter t.
|
||||
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||
/// otherwise it computes value of the derivation of B1, up to degree 3
|
||||
/// derivation.
|
||||
/// \param t Parameter of polynomial function
|
||||
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||
static constexpr PDFReal B1(PDFReal t, int derivative);
|
||||
|
||||
/// Computes Bernstein polynomial B2 for parameter t.
|
||||
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||
/// otherwise it computes value of the derivation of B2, up to degree 3
|
||||
/// derivation.
|
||||
/// \param t Parameter of polynomial function
|
||||
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||
static constexpr PDFReal B2(PDFReal t, int derivative);
|
||||
|
||||
/// Computes Bernstein polynomial B3 for parameter t.
|
||||
/// If \p derivative is zero, then it evaluates polynomial's value,
|
||||
/// otherwise it computes value of the derivation of B3, up to degree 3
|
||||
/// derivation.
|
||||
/// \param t Parameter of polynomial function
|
||||
/// \param derivativeOrder Derivative order (0 - value, 1 - first derivation, 2 - second derivation, 3 - third derivation)
|
||||
static constexpr PDFReal B3(PDFReal t, int derivative);
|
||||
|
||||
static constexpr PDFReal pow2(PDFReal x) { return x * x; }
|
||||
static constexpr PDFReal pow3(PDFReal x) { return x * x * x; }
|
||||
|
||||
PointMatrix m_P;
|
||||
};
|
||||
|
||||
} // namespace pdf
|
||||
|
||||
#endif // PDFPATTERN_H
|
||||
|
Reference in New Issue
Block a user