mirror of
https://github.com/JakubMelka/PDF4QT.git
synced 2025-06-05 21:59:17 +02:00
Stitching function unit tests
This commit is contained in:
@ -70,6 +70,12 @@ public:
|
||||
QString errorMessage;
|
||||
};
|
||||
|
||||
/// Returns number of input variables
|
||||
inline uint32_t getInputVariableCount() const { return m_m; }
|
||||
|
||||
/// Returns number of output variables
|
||||
inline uint32_t getOutputVariableCount() const { return m_n; }
|
||||
|
||||
using iterator = PDFReal*;
|
||||
using const_iterator = const PDFReal*;
|
||||
|
||||
@ -112,7 +118,7 @@ protected:
|
||||
/// \param y_max End of the output interval
|
||||
static inline constexpr PDFReal interpolate(PDFReal x, PDFReal x_min, PDFReal x_max, PDFReal y_min, PDFReal y_max)
|
||||
{
|
||||
return y_min + x * (y_max - y_min) / (x_max - x_min);
|
||||
return y_min + (x - x_min) * (y_max - y_min) / (x_max - x_min);
|
||||
}
|
||||
|
||||
/// Performs linear interpolation between c0 and c1 using x (in range [0.0, 1.0]). If x is not of this range,
|
||||
@ -215,7 +221,7 @@ private:
|
||||
/// is defined as f(x) = c0 + x^exponent * (c1 - c0). If exponent is 1.0, then linear interpolation
|
||||
/// is performed as f(x) = c0 * (1 - x) + x * c1. To be more precise, if exponent is nearly 1.0,
|
||||
/// then linear interpolation is used instead.
|
||||
class PDFExponentialFunction : public PDFFunction
|
||||
class PDFFORQTLIBSHARED_EXPORT PDFExponentialFunction : public PDFFunction
|
||||
{
|
||||
public:
|
||||
/// Construct new exponential function.
|
||||
@ -252,7 +258,7 @@ private:
|
||||
/// Stitching function (Type 3 function)
|
||||
/// This type of function has always exactly one input. Transformation of this function
|
||||
/// is defined via k subfunctions which are used in defined intervals of the input value.
|
||||
class PDFStitchingFunction : public PDFFunction
|
||||
class PDFFORQTLIBSHARED_EXPORT PDFStitchingFunction : public PDFFunction
|
||||
{
|
||||
public:
|
||||
struct PartialFunction
|
||||
|
Reference in New Issue
Block a user