mirror of
				https://bitbucket.org/chromiumembedded/cef
				synced 2025-06-05 21:39:12 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2013 Google Inc. All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //    * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //    * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //    * Neither the name of Google Inc. nor the name Chromium Embedded
 | |
| // Framework nor the names of its contributors may be used to endorse
 | |
| // or promote products derived from this software without specific prior
 | |
| // written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Do not include this header file directly. Use base/cef_atomicops.h
 | |
| // instead.
 | |
| //
 | |
| // LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
 | |
| 
 | |
| #ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
 | |
| #define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
 | |
| 
 | |
| #if defined(OS_QNX)
 | |
| #include <sys/cpuinline.h>
 | |
| #endif
 | |
| 
 | |
| namespace base {
 | |
| namespace subtle {
 | |
| 
 | |
| // Memory barriers on ARM are funky, but the kernel is here to help:
 | |
| //
 | |
| // * ARMv5 didn't support SMP, there is no memory barrier instruction at
 | |
| //   all on this architecture, or when targeting its machine code.
 | |
| //
 | |
| // * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
 | |
| //   writing a random value to a very specific coprocessor register.
 | |
| //
 | |
| // * On ARMv7, the "dmb" instruction is used to perform a full memory
 | |
| //   barrier (though writing to the co-processor will still work).
 | |
| //   However, on single core devices (e.g. Nexus One, or Nexus S),
 | |
| //   this instruction will take up to 200 ns, which is huge, even though
 | |
| //   it's completely un-needed on these devices.
 | |
| //
 | |
| // * There is no easy way to determine at runtime if the device is
 | |
| //   single or multi-core. However, the kernel provides a useful helper
 | |
| //   function at a fixed memory address (0xffff0fa0), which will always
 | |
| //   perform a memory barrier in the most efficient way. I.e. on single
 | |
| //   core devices, this is an empty function that exits immediately.
 | |
| //   On multi-core devices, it implements a full memory barrier.
 | |
| //
 | |
| // * This source could be compiled to ARMv5 machine code that runs on a
 | |
| //   multi-core ARMv6 or ARMv7 device. In this case, memory barriers
 | |
| //   are needed for correct execution. Always call the kernel helper, even
 | |
| //   when targeting ARMv5TE.
 | |
| //
 | |
| 
 | |
| inline void MemoryBarrier() {
 | |
| #if defined(OS_LINUX) || defined(OS_ANDROID)
 | |
|   // Note: This is a function call, which is also an implicit compiler barrier.
 | |
|   typedef void (*KernelMemoryBarrierFunc)();
 | |
|   ((KernelMemoryBarrierFunc)0xffff0fa0)();
 | |
| #elif defined(OS_QNX)
 | |
|   __cpu_membarrier();
 | |
| #else
 | |
| #error MemoryBarrier() is not implemented on this platform.
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // An ARM toolchain would only define one of these depending on which
 | |
| // variant of the target architecture is being used. This tests against
 | |
| // any known ARMv6 or ARMv7 variant, where it is possible to directly
 | |
| // use ldrex/strex instructions to implement fast atomic operations.
 | |
| #if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) ||  \
 | |
|     defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
 | |
|     defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) ||  \
 | |
|     defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
 | |
|     defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
 | |
| 
 | |
| inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                          Atomic32 old_value,
 | |
|                                          Atomic32 new_value) {
 | |
|   Atomic32 prev_value;
 | |
|   int reloop;
 | |
|   do {
 | |
|     // The following is equivalent to:
 | |
|     //
 | |
|     //   prev_value = LDREX(ptr)
 | |
|     //   reloop = 0
 | |
|     //   if (prev_value != old_value)
 | |
|     //      reloop = STREX(ptr, new_value)
 | |
|     __asm__ __volatile__(
 | |
|         "    ldrex %0, [%3]\n"
 | |
|         "    mov %1, #0\n"
 | |
|         "    cmp %0, %4\n"
 | |
| #ifdef __thumb2__
 | |
|         "    it eq\n"
 | |
| #endif
 | |
|         "    strexeq %1, %5, [%3]\n"
 | |
|         : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
 | |
|         : "r"(ptr), "r"(old_value), "r"(new_value)
 | |
|         : "cc", "memory");
 | |
|   } while (reloop != 0);
 | |
|   return prev_value;
 | |
| }
 | |
| 
 | |
| inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                        Atomic32 old_value,
 | |
|                                        Atomic32 new_value) {
 | |
|   Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
 | |
|   MemoryBarrier();
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                        Atomic32 old_value,
 | |
|                                        Atomic32 new_value) {
 | |
|   MemoryBarrier();
 | |
|   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
 | |
| }
 | |
| 
 | |
| inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
 | |
|                                           Atomic32 increment) {
 | |
|   Atomic32 value;
 | |
|   int reloop;
 | |
|   do {
 | |
|     // Equivalent to:
 | |
|     //
 | |
|     //  value = LDREX(ptr)
 | |
|     //  value += increment
 | |
|     //  reloop = STREX(ptr, value)
 | |
|     //
 | |
|     __asm__ __volatile__(
 | |
|         "    ldrex %0, [%3]\n"
 | |
|         "    add %0, %0, %4\n"
 | |
|         "    strex %1, %0, [%3]\n"
 | |
|         : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
 | |
|         : "r"(ptr), "r"(increment)
 | |
|         : "cc", "memory");
 | |
|   } while (reloop);
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
 | |
|                                         Atomic32 increment) {
 | |
|   // TODO(digit): Investigate if it's possible to implement this with
 | |
|   // a single MemoryBarrier() operation between the LDREX and STREX.
 | |
|   // See http://crbug.com/246514
 | |
|   MemoryBarrier();
 | |
|   Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
 | |
|   MemoryBarrier();
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
 | |
|                                          Atomic32 new_value) {
 | |
|   Atomic32 old_value;
 | |
|   int reloop;
 | |
|   do {
 | |
|     // old_value = LDREX(ptr)
 | |
|     // reloop = STREX(ptr, new_value)
 | |
|     __asm__ __volatile__(
 | |
|         "   ldrex %0, [%3]\n"
 | |
|         "   strex %1, %4, [%3]\n"
 | |
|         : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
 | |
|         : "r"(ptr), "r"(new_value)
 | |
|         : "cc", "memory");
 | |
|   } while (reloop != 0);
 | |
|   return old_value;
 | |
| }
 | |
| 
 | |
| // This tests against any known ARMv5 variant.
 | |
| #elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
 | |
|     defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
 | |
| 
 | |
| // The kernel also provides a helper function to perform an atomic
 | |
| // compare-and-swap operation at the hard-wired address 0xffff0fc0.
 | |
| // On ARMv5, this is implemented by a special code path that the kernel
 | |
| // detects and treats specially when thread pre-emption happens.
 | |
| // On ARMv6 and higher, it uses LDREX/STREX instructions instead.
 | |
| //
 | |
| // Note that this always perform a full memory barrier, there is no
 | |
| // need to add calls MemoryBarrier() before or after it. It also
 | |
| // returns 0 on success, and 1 on exit.
 | |
| //
 | |
| // Available and reliable since Linux 2.6.24. Both Android and ChromeOS
 | |
| // use newer kernel revisions, so this should not be a concern.
 | |
| namespace {
 | |
| 
 | |
| inline int LinuxKernelCmpxchg(Atomic32 old_value,
 | |
|                               Atomic32 new_value,
 | |
|                               volatile Atomic32* ptr) {
 | |
|   typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
 | |
|   return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                          Atomic32 old_value,
 | |
|                                          Atomic32 new_value) {
 | |
|   Atomic32 prev_value;
 | |
|   for (;;) {
 | |
|     prev_value = *ptr;
 | |
|     if (prev_value != old_value)
 | |
|       return prev_value;
 | |
|     if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
 | |
|       return old_value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
 | |
|                                          Atomic32 new_value) {
 | |
|   Atomic32 old_value;
 | |
|   do {
 | |
|     old_value = *ptr;
 | |
|   } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
 | |
|   return old_value;
 | |
| }
 | |
| 
 | |
| inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
 | |
|                                           Atomic32 increment) {
 | |
|   return Barrier_AtomicIncrement(ptr, increment);
 | |
| }
 | |
| 
 | |
| inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
 | |
|                                         Atomic32 increment) {
 | |
|   for (;;) {
 | |
|     // Atomic exchange the old value with an incremented one.
 | |
|     Atomic32 old_value = *ptr;
 | |
|     Atomic32 new_value = old_value + increment;
 | |
|     if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
 | |
|       // The exchange took place as expected.
 | |
|       return new_value;
 | |
|     }
 | |
|     // Otherwise, *ptr changed mid-loop and we need to retry.
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                        Atomic32 old_value,
 | |
|                                        Atomic32 new_value) {
 | |
|   Atomic32 prev_value;
 | |
|   for (;;) {
 | |
|     prev_value = *ptr;
 | |
|     if (prev_value != old_value) {
 | |
|       // Always ensure acquire semantics.
 | |
|       MemoryBarrier();
 | |
|       return prev_value;
 | |
|     }
 | |
|     if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
 | |
|       return old_value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
 | |
|                                        Atomic32 old_value,
 | |
|                                        Atomic32 new_value) {
 | |
|   // This could be implemented as:
 | |
|   //    MemoryBarrier();
 | |
|   //    return NoBarrier_CompareAndSwap();
 | |
|   //
 | |
|   // But would use 3 barriers per succesful CAS. To save performance,
 | |
|   // use Acquire_CompareAndSwap(). Its implementation guarantees that:
 | |
|   // - A succesful swap uses only 2 barriers (in the kernel helper).
 | |
|   // - An early return due to (prev_value != old_value) performs
 | |
|   //   a memory barrier with no store, which is equivalent to the
 | |
|   //   generic implementation above.
 | |
|   return Acquire_CompareAndSwap(ptr, old_value, new_value);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #error "Your CPU's ARM architecture is not supported yet"
 | |
| #endif
 | |
| 
 | |
| // NOTE: Atomicity of the following load and store operations is only
 | |
| // guaranteed in case of 32-bit alignement of |ptr| values.
 | |
| 
 | |
| inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
 | |
|   *ptr = value;
 | |
| }
 | |
| 
 | |
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
 | |
|   *ptr = value;
 | |
|   MemoryBarrier();
 | |
| }
 | |
| 
 | |
| inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
 | |
|   MemoryBarrier();
 | |
|   *ptr = value;
 | |
| }
 | |
| 
 | |
| inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
 | |
|   return *ptr;
 | |
| }
 | |
| 
 | |
| inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
 | |
|   Atomic32 value = *ptr;
 | |
|   MemoryBarrier();
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
 | |
|   MemoryBarrier();
 | |
|   return *ptr;
 | |
| }
 | |
| 
 | |
| }  // namespace base::subtle
 | |
| }  // namespace base
 | |
| 
 | |
| #endif  // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
 |