421 lines
13 KiB
C++
421 lines
13 KiB
C++
// Copyright (c) 2017 Marshall A. Greenblatt. Portions copyright (c) 2011
|
|
// Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|
|
#define CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|
|
#pragma once
|
|
|
|
#if defined(USING_CHROMIUM_INCLUDES)
|
|
// When building CEF include the Chromium header directly.
|
|
#include "base/memory/scoped_refptr.h"
|
|
#else // !USING_CHROMIUM_INCLUDES
|
|
// The following is substantially similar to the Chromium implementation.
|
|
// If the Chromium implementation diverges the below implementation should be
|
|
// updated to match.
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <iosfwd>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "include/base/cef_logging.h"
|
|
|
|
template <class T>
|
|
class scoped_refptr;
|
|
|
|
namespace base {
|
|
|
|
template <class, typename>
|
|
class RefCounted;
|
|
template <class, typename>
|
|
class RefCountedThreadSafe;
|
|
class SequencedTaskRunner;
|
|
class WrappedPromise;
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRef(T* t);
|
|
|
|
namespace internal {
|
|
|
|
class BasePromise;
|
|
|
|
} // namespace internal
|
|
|
|
namespace cef_subtle {
|
|
|
|
enum AdoptRefTag { kAdoptRefTag };
|
|
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
|
|
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
|
|
|
|
template <typename T, typename U, typename V>
|
|
constexpr bool IsRefCountPreferenceOverridden(const T*,
|
|
const RefCounted<U, V>*) {
|
|
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
|
|
std::decay_t<decltype(U::kRefCountPreference)>>::value;
|
|
}
|
|
|
|
template <typename T, typename U, typename V>
|
|
constexpr bool IsRefCountPreferenceOverridden(
|
|
const T*,
|
|
const RefCountedThreadSafe<U, V>*) {
|
|
return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
|
|
std::decay_t<decltype(U::kRefCountPreference)>>::value;
|
|
}
|
|
|
|
constexpr bool IsRefCountPreferenceOverridden(...) {
|
|
return false;
|
|
}
|
|
|
|
} // namespace cef_subtle
|
|
|
|
// Creates a scoped_refptr from a raw pointer without incrementing the reference
|
|
// count. Use this only for a newly created object whose reference count starts
|
|
// from 1 instead of 0.
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRef(T* obj) {
|
|
using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
|
|
static_assert(std::is_same<cef_subtle::StartRefCountFromOneTag, Tag>::value,
|
|
"Use AdoptRef only if the reference count starts from one.");
|
|
|
|
DCHECK(obj);
|
|
DCHECK(obj->HasOneRef());
|
|
obj->Adopted();
|
|
return scoped_refptr<T>(obj, cef_subtle::kAdoptRefTag);
|
|
}
|
|
|
|
namespace cef_subtle {
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
|
|
return scoped_refptr<T>(obj);
|
|
}
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
|
|
return AdoptRef(obj);
|
|
}
|
|
|
|
} // namespace cef_subtle
|
|
|
|
// Constructs an instance of T, which is a ref counted type, and wraps the
|
|
// object into a scoped_refptr<T>.
|
|
template <typename T, typename... Args>
|
|
scoped_refptr<T> MakeRefCounted(Args&&... args) {
|
|
T* obj = new T(std::forward<Args>(args)...);
|
|
return cef_subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
|
|
}
|
|
|
|
// Takes an instance of T, which is a ref counted type, and wraps the object
|
|
// into a scoped_refptr<T>.
|
|
template <typename T>
|
|
scoped_refptr<T> WrapRefCounted(T* t) {
|
|
return scoped_refptr<T>(t);
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
///
|
|
/// A smart pointer class for reference counted objects. Use this class instead
|
|
/// of calling AddRef and Release manually on a reference counted object to
|
|
/// avoid common memory leaks caused by forgetting to Release an object
|
|
/// reference. Sample usage:
|
|
///
|
|
/// <pre>
|
|
/// class MyFoo : public RefCounted<MyFoo> {
|
|
/// ...
|
|
/// private:
|
|
/// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
|
|
/// ~MyFoo(); // Destructor must be
|
|
/// private/protected.
|
|
/// };
|
|
///
|
|
/// void some_function() {
|
|
/// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
|
|
/// foo->Method(param);
|
|
/// // |foo| is released when this function returns
|
|
/// }
|
|
///
|
|
/// void some_other_function() {
|
|
/// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
|
|
/// ...
|
|
/// foo.reset(); // explicitly releases |foo|
|
|
/// ...
|
|
/// if (foo)
|
|
/// foo->Method(param);
|
|
/// }
|
|
/// </pre>
|
|
///
|
|
/// The above examples show how scoped_refptr<T> acts like a pointer to T.
|
|
/// Given two scoped_refptr<T> classes, it is also possible to exchange
|
|
/// references between the two objects, like so:
|
|
///
|
|
/// <pre>
|
|
/// {
|
|
/// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
|
|
/// scoped_refptr<MyFoo> b;
|
|
///
|
|
/// b.swap(a);
|
|
/// // now, |b| references the MyFoo object, and |a| references nullptr.
|
|
/// }
|
|
/// </pre>
|
|
///
|
|
/// To make both |a| and |b| in the above example reference the same MyFoo
|
|
/// object, simply use the assignment operator:
|
|
///
|
|
/// <pre>
|
|
/// {
|
|
/// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
|
|
/// scoped_refptr<MyFoo> b;
|
|
///
|
|
/// b = a;
|
|
/// // now, |a| and |b| each own a reference to the same MyFoo object.
|
|
/// }
|
|
/// </pre>
|
|
///
|
|
/// Also see Chromium's ownership and calling conventions:
|
|
/// https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
|
|
/// Specifically:
|
|
/// If the function (at least sometimes) takes a ref on a refcounted object,
|
|
/// declare the param as scoped_refptr<T>. The caller can decide whether it
|
|
/// wishes to transfer ownership (by calling std::move(t) when passing t) or
|
|
/// retain its ref (by simply passing t directly).
|
|
/// In other words, use scoped_refptr like you would a std::unique_ptr except
|
|
/// in the odd case where it's required to hold on to a ref while handing one
|
|
/// to another component (if a component merely needs to use t on the stack
|
|
/// without keeping a ref: pass t as a raw T*).
|
|
///
|
|
template <class T>
|
|
class TRIVIAL_ABI scoped_refptr {
|
|
public:
|
|
typedef T element_type;
|
|
|
|
constexpr scoped_refptr() = default;
|
|
|
|
// Allow implicit construction from nullptr.
|
|
constexpr scoped_refptr(std::nullptr_t) {}
|
|
|
|
// Constructs from a raw pointer. Note that this constructor allows implicit
|
|
// conversion from T* to scoped_refptr<T> which is strongly discouraged. If
|
|
// you are creating a new ref-counted object please use
|
|
// base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you
|
|
// should move or copy construct from an existing scoped_refptr<T> to the
|
|
// ref-counted object.
|
|
scoped_refptr(T* p) : ptr_(p) {
|
|
if (ptr_) {
|
|
AddRef(ptr_);
|
|
}
|
|
}
|
|
|
|
// Copy constructor. This is required in addition to the copy conversion
|
|
// constructor below.
|
|
scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
|
|
|
|
// Copy conversion constructor.
|
|
template <typename U,
|
|
typename = typename std::enable_if<
|
|
std::is_convertible<U*, T*>::value>::type>
|
|
scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
|
|
|
|
// Move constructor. This is required in addition to the move conversion
|
|
// constructor below.
|
|
scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
|
|
|
|
// Move conversion constructor.
|
|
template <typename U,
|
|
typename = typename std::enable_if<
|
|
std::is_convertible<U*, T*>::value>::type>
|
|
scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
|
|
r.ptr_ = nullptr;
|
|
}
|
|
|
|
~scoped_refptr() {
|
|
static_assert(!base::cef_subtle::IsRefCountPreferenceOverridden(
|
|
static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
|
|
"It's unsafe to override the ref count preference."
|
|
" Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
|
|
" from subclasses.");
|
|
if (ptr_) {
|
|
Release(ptr_);
|
|
}
|
|
}
|
|
|
|
T* get() const { return ptr_; }
|
|
|
|
T& operator*() const {
|
|
DCHECK(ptr_);
|
|
return *ptr_;
|
|
}
|
|
|
|
T* operator->() const {
|
|
DCHECK(ptr_);
|
|
return ptr_;
|
|
}
|
|
|
|
scoped_refptr& operator=(std::nullptr_t) {
|
|
reset();
|
|
return *this;
|
|
}
|
|
|
|
scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
|
|
|
|
// Unified assignment operator.
|
|
scoped_refptr& operator=(scoped_refptr r) noexcept {
|
|
swap(r);
|
|
return *this;
|
|
}
|
|
|
|
// Sets managed object to null and releases reference to the previous managed
|
|
// object, if it existed.
|
|
void reset() { scoped_refptr().swap(*this); }
|
|
|
|
// Returns the owned pointer (if any), releasing ownership to the caller. The
|
|
// caller is responsible for managing the lifetime of the reference.
|
|
[[nodiscard]] T* release();
|
|
|
|
void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
|
|
|
|
explicit operator bool() const { return ptr_ != nullptr; }
|
|
|
|
template <typename U>
|
|
bool operator==(const scoped_refptr<U>& rhs) const {
|
|
return ptr_ == rhs.get();
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator!=(const scoped_refptr<U>& rhs) const {
|
|
return !operator==(rhs);
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator<(const scoped_refptr<U>& rhs) const {
|
|
return ptr_ < rhs.get();
|
|
}
|
|
|
|
protected:
|
|
T* ptr_ = nullptr;
|
|
|
|
private:
|
|
template <typename U>
|
|
friend scoped_refptr<U> base::AdoptRef(U*);
|
|
friend class ::base::SequencedTaskRunner;
|
|
|
|
// Friend access so these classes can use the constructor below as part of a
|
|
// binary size optimization.
|
|
friend class ::base::internal::BasePromise;
|
|
friend class ::base::WrappedPromise;
|
|
|
|
scoped_refptr(T* p, base::cef_subtle::AdoptRefTag) : ptr_(p) {}
|
|
|
|
// Friend required for move constructors that set r.ptr_ to null.
|
|
template <typename U>
|
|
friend class scoped_refptr;
|
|
|
|
// Non-inline helpers to allow:
|
|
// class Opaque;
|
|
// extern template class scoped_refptr<Opaque>;
|
|
// Otherwise the compiler will complain that Opaque is an incomplete type.
|
|
static void AddRef(T* ptr);
|
|
static void Release(T* ptr);
|
|
};
|
|
|
|
template <typename T>
|
|
T* scoped_refptr<T>::release() {
|
|
T* ptr = ptr_;
|
|
ptr_ = nullptr;
|
|
return ptr;
|
|
}
|
|
|
|
// static
|
|
template <typename T>
|
|
void scoped_refptr<T>::AddRef(T* ptr) {
|
|
ptr->AddRef();
|
|
}
|
|
|
|
// static
|
|
template <typename T>
|
|
void scoped_refptr<T>::Release(T* ptr) {
|
|
ptr->Release();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
|
|
return lhs.get() == rhs;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
|
|
return lhs == rhs.get();
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
|
return !static_cast<bool>(lhs);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
|
return !static_cast<bool>(rhs);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
|
return !operator==(lhs, null);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
|
return !operator==(null, rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
|
|
return out << p.get();
|
|
}
|
|
|
|
template <typename T>
|
|
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
|
|
lhs.swap(rhs);
|
|
}
|
|
|
|
#endif // !USING_CHROMIUM_INCLUDES
|
|
|
|
#endif // CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
|