mirror of
https://bitbucket.org/chromiumembedded/cef
synced 2025-01-28 01:59:25 +01:00
626 lines
24 KiB
C++
626 lines
24 KiB
C++
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
|
// Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Scopers help you manage ownership of a pointer, helping you easily manage a
|
|
// pointer within a scope, and automatically destroying the pointer at the end
|
|
// of a scope. There are two main classes you will use, which correspond to the
|
|
// operators new/delete and new[]/delete[].
|
|
//
|
|
// Example usage (scoped_ptr<T>):
|
|
// {
|
|
// scoped_ptr<Foo> foo(new Foo("wee"));
|
|
// } // foo goes out of scope, releasing the pointer with it.
|
|
//
|
|
// {
|
|
// scoped_ptr<Foo> foo; // No pointer managed.
|
|
// foo.reset(new Foo("wee")); // Now a pointer is managed.
|
|
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
|
|
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
|
|
// foo->Method(); // Foo::Method() called.
|
|
// foo.get()->Method(); // Foo::Method() called.
|
|
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
|
|
// // manages a pointer.
|
|
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
|
|
// foo.reset(); // Foo("wee4") destroyed, foo no longer
|
|
// // manages a pointer.
|
|
// } // foo wasn't managing a pointer, so nothing was destroyed.
|
|
//
|
|
// Example usage (scoped_ptr<T[]>):
|
|
// {
|
|
// scoped_ptr<Foo[]> foo(new Foo[100]);
|
|
// foo.get()->Method(); // Foo::Method on the 0th element.
|
|
// foo[10].Method(); // Foo::Method on the 10th element.
|
|
// }
|
|
//
|
|
// These scopers also implement part of the functionality of C++11 unique_ptr
|
|
// in that they are "movable but not copyable." You can use the scopers in
|
|
// the parameter and return types of functions to signify ownership transfer
|
|
// in to and out of a function. When calling a function that has a scoper
|
|
// as the argument type, it must be called with the result of an analogous
|
|
// scoper's Pass() function or another function that generates a temporary;
|
|
// passing by copy will NOT work. Here is an example using scoped_ptr:
|
|
//
|
|
// void TakesOwnership(scoped_ptr<Foo> arg) {
|
|
// // Do something with arg
|
|
// }
|
|
// scoped_ptr<Foo> CreateFoo() {
|
|
// // No need for calling Pass() because we are constructing a temporary
|
|
// // for the return value.
|
|
// return scoped_ptr<Foo>(new Foo("new"));
|
|
// }
|
|
// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
|
|
// return arg.Pass();
|
|
// }
|
|
//
|
|
// {
|
|
// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
|
|
// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
|
|
// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
|
|
// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
|
|
// PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
|
|
// }
|
|
//
|
|
// Notice that if you do not call Pass() when returning from PassThru(), or
|
|
// when invoking TakesOwnership(), the code will not compile because scopers
|
|
// are not copyable; they only implement move semantics which require calling
|
|
// the Pass() function to signify a destructive transfer of state. CreateFoo()
|
|
// is different though because we are constructing a temporary on the return
|
|
// line and thus can avoid needing to call Pass().
|
|
//
|
|
// Pass() properly handles upcast in initialization, i.e. you can use a
|
|
// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
|
|
//
|
|
// scoped_ptr<Foo> foo(new Foo());
|
|
// scoped_ptr<FooParent> parent(foo.Pass());
|
|
//
|
|
// PassAs<>() should be used to upcast return value in return statement:
|
|
//
|
|
// scoped_ptr<Foo> CreateFoo() {
|
|
// scoped_ptr<FooChild> result(new FooChild());
|
|
// return result.PassAs<Foo>();
|
|
// }
|
|
//
|
|
// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
|
|
// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|
|
#define CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|
|
#pragma once
|
|
|
|
#if defined(BASE_MEMORY_SCOPED_PTR_H_)
|
|
// Do nothing if the Chromium header has already been included.
|
|
// This can happen in cases where Chromium code is used directly by the
|
|
// client application. When using Chromium code directly always include
|
|
// the Chromium header first to avoid type conflicts.
|
|
#elif defined(USING_CHROMIUM_INCLUDES)
|
|
// Do nothing when building CEF.
|
|
#else // !USING_CHROMIUM_INCLUDES
|
|
// The following is substantially similar to the Chromium implementation.
|
|
// If the Chromium implementation diverges the below implementation should be
|
|
// updated to match.
|
|
|
|
// This is an implementation designed to match the anticipated future TR2
|
|
// implementation of the scoped_ptr class.
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm> // For std::swap().
|
|
|
|
#include "include/base/cef_basictypes.h"
|
|
#include "include/base/cef_build.h"
|
|
#include "include/base/cef_macros.h"
|
|
#include "include/base/cef_move.h"
|
|
#include "include/base/cef_template_util.h"
|
|
|
|
namespace base {
|
|
|
|
namespace subtle {
|
|
class RefCountedBase;
|
|
class RefCountedThreadSafeBase;
|
|
} // namespace subtle
|
|
|
|
// Function object which deletes its parameter, which must be a pointer.
|
|
// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
|
// invokes 'delete'. The default deleter for scoped_ptr<T>.
|
|
template <class T>
|
|
struct DefaultDeleter {
|
|
DefaultDeleter() {}
|
|
template <typename U>
|
|
DefaultDeleter(const DefaultDeleter<U>& other) {
|
|
// IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
|
// if U* is implicitly convertible to T* and U is not an array type.
|
|
//
|
|
// Correct implementation should use SFINAE to disable this
|
|
// constructor. However, since there are no other 1-argument constructors,
|
|
// using a COMPILE_ASSERT() based on is_convertible<> and requiring
|
|
// complete types is simpler and will cause compile failures for equivalent
|
|
// misuses.
|
|
//
|
|
// Note, the is_convertible<U*, T*> check also ensures that U is not an
|
|
// array. T is guaranteed to be a non-array, so any U* where U is an array
|
|
// cannot convert to T*.
|
|
enum { T_must_be_complete = sizeof(T) };
|
|
enum { U_must_be_complete = sizeof(U) };
|
|
COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
|
|
U_ptr_must_implicitly_convert_to_T_ptr);
|
|
}
|
|
inline void operator()(T* ptr) const {
|
|
enum { type_must_be_complete = sizeof(T) };
|
|
delete ptr;
|
|
}
|
|
};
|
|
|
|
// Specialization of DefaultDeleter for array types.
|
|
template <class T>
|
|
struct DefaultDeleter<T[]> {
|
|
inline void operator()(T* ptr) const {
|
|
enum { type_must_be_complete = sizeof(T) };
|
|
delete[] ptr;
|
|
}
|
|
|
|
private:
|
|
// Disable this operator for any U != T because it is undefined to execute
|
|
// an array delete when the static type of the array mismatches the dynamic
|
|
// type.
|
|
//
|
|
// References:
|
|
// C++98 [expr.delete]p3
|
|
// http://cplusplus.github.com/LWG/lwg-defects.html#938
|
|
template <typename U>
|
|
void operator()(U* array) const;
|
|
};
|
|
|
|
template <class T, int n>
|
|
struct DefaultDeleter<T[n]> {
|
|
// Never allow someone to declare something like scoped_ptr<int[10]>.
|
|
COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
|
|
};
|
|
|
|
// Function object which invokes 'free' on its parameter, which must be
|
|
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
|
|
//
|
|
// scoped_ptr<int, base::FreeDeleter> foo_ptr(
|
|
// static_cast<int*>(malloc(sizeof(int))));
|
|
struct FreeDeleter {
|
|
inline void operator()(void* ptr) const { free(ptr); }
|
|
};
|
|
|
|
namespace cef_internal {
|
|
|
|
template <typename T>
|
|
struct IsNotRefCounted {
|
|
enum {
|
|
value =
|
|
!base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
|
|
!base::is_convertible<T*,
|
|
base::subtle::RefCountedThreadSafeBase*>::value
|
|
};
|
|
};
|
|
|
|
// Minimal implementation of the core logic of scoped_ptr, suitable for
|
|
// reuse in both scoped_ptr and its specializations.
|
|
template <class T, class D>
|
|
class scoped_ptr_impl {
|
|
public:
|
|
explicit scoped_ptr_impl(T* p) : data_(p) {}
|
|
|
|
// Initializer for deleters that have data parameters.
|
|
scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
|
|
|
|
// Templated constructor that destructively takes the value from another
|
|
// scoped_ptr_impl.
|
|
template <typename U, typename V>
|
|
scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
|
|
: data_(other->release(), other->get_deleter()) {
|
|
// We do not support move-only deleters. We could modify our move
|
|
// emulation to have base::subtle::move() and base::subtle::forward()
|
|
// functions that are imperfect emulations of their C++11 equivalents,
|
|
// but until there's a requirement, just assume deleters are copyable.
|
|
}
|
|
|
|
template <typename U, typename V>
|
|
void TakeState(scoped_ptr_impl<U, V>* other) {
|
|
// See comment in templated constructor above regarding lack of support
|
|
// for move-only deleters.
|
|
reset(other->release());
|
|
get_deleter() = other->get_deleter();
|
|
}
|
|
|
|
~scoped_ptr_impl() {
|
|
if (data_.ptr != NULL) {
|
|
// Not using get_deleter() saves one function call in non-optimized
|
|
// builds.
|
|
static_cast<D&>(data_)(data_.ptr);
|
|
}
|
|
}
|
|
|
|
void reset(T* p) {
|
|
// This is a self-reset, which is no longer allowed: http://crbug.com/162971
|
|
if (p != NULL && p == data_.ptr)
|
|
abort();
|
|
|
|
// Note that running data_.ptr = p can lead to undefined behavior if
|
|
// get_deleter()(get()) deletes this. In order to prevent this, reset()
|
|
// should update the stored pointer before deleting its old value.
|
|
//
|
|
// However, changing reset() to use that behavior may cause current code to
|
|
// break in unexpected ways. If the destruction of the owned object
|
|
// dereferences the scoped_ptr when it is destroyed by a call to reset(),
|
|
// then it will incorrectly dispatch calls to |p| rather than the original
|
|
// value of |data_.ptr|.
|
|
//
|
|
// During the transition period, set the stored pointer to NULL while
|
|
// deleting the object. Eventually, this safety check will be removed to
|
|
// prevent the scenario initially described from occuring and
|
|
// http://crbug.com/176091 can be closed.
|
|
T* old = data_.ptr;
|
|
data_.ptr = NULL;
|
|
if (old != NULL)
|
|
static_cast<D&>(data_)(old);
|
|
data_.ptr = p;
|
|
}
|
|
|
|
T* get() const { return data_.ptr; }
|
|
|
|
D& get_deleter() { return data_; }
|
|
const D& get_deleter() const { return data_; }
|
|
|
|
void swap(scoped_ptr_impl& p2) {
|
|
// Standard swap idiom: 'using std::swap' ensures that std::swap is
|
|
// present in the overload set, but we call swap unqualified so that
|
|
// any more-specific overloads can be used, if available.
|
|
using std::swap;
|
|
swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
|
|
swap(data_.ptr, p2.data_.ptr);
|
|
}
|
|
|
|
T* release() {
|
|
T* old_ptr = data_.ptr;
|
|
data_.ptr = NULL;
|
|
return old_ptr;
|
|
}
|
|
|
|
private:
|
|
// Needed to allow type-converting constructor.
|
|
template <typename U, typename V>
|
|
friend class scoped_ptr_impl;
|
|
|
|
// Use the empty base class optimization to allow us to have a D
|
|
// member, while avoiding any space overhead for it when D is an
|
|
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
|
// discussion of this technique.
|
|
struct Data : public D {
|
|
explicit Data(T* ptr_in) : ptr(ptr_in) {}
|
|
Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
|
T* ptr;
|
|
};
|
|
|
|
Data data_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
|
|
};
|
|
|
|
} // namespace cef_internal
|
|
|
|
} // namespace base
|
|
|
|
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
|
// automatically deletes the pointer it holds (if any).
|
|
// That is, scoped_ptr<T> owns the T object that it points to.
|
|
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
|
|
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
|
// dereference it, you get the thread safety guarantees of T.
|
|
//
|
|
// The size of scoped_ptr is small. On most compilers, when using the
|
|
// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
|
|
// increase the size proportional to whatever state they need to have. See
|
|
// comments inside scoped_ptr_impl<> for details.
|
|
//
|
|
// Current implementation targets having a strict subset of C++11's
|
|
// unique_ptr<> features. Known deficiencies include not supporting move-only
|
|
// deleteres, function pointers as deleters, and deleters with reference
|
|
// types.
|
|
template <class T, class D = base::DefaultDeleter<T>>
|
|
class scoped_ptr {
|
|
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
|
|
|
COMPILE_ASSERT(base::cef_internal::IsNotRefCounted<T>::value,
|
|
T_is_refcounted_type_and_needs_scoped_refptr);
|
|
|
|
public:
|
|
// The element and deleter types.
|
|
typedef T element_type;
|
|
typedef D deleter_type;
|
|
|
|
// Constructor. Defaults to initializing with NULL.
|
|
scoped_ptr() : impl_(NULL) {}
|
|
|
|
// Constructor. Takes ownership of p.
|
|
explicit scoped_ptr(element_type* p) : impl_(p) {}
|
|
|
|
// Constructor. Allows initialization of a stateful deleter.
|
|
scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
|
|
|
|
// Constructor. Allows construction from a scoped_ptr rvalue for a
|
|
// convertible type and deleter.
|
|
//
|
|
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
|
|
// from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
|
|
// has different post-conditions if D is a reference type. Since this
|
|
// implementation does not support deleters with reference type,
|
|
// we do not need a separate move constructor allowing us to avoid one
|
|
// use of SFINAE. You only need to care about this if you modify the
|
|
// implementation of scoped_ptr.
|
|
template <typename U, typename V>
|
|
scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
|
|
COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
|
}
|
|
|
|
// Constructor. Move constructor for C++03 move emulation of this type.
|
|
scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {}
|
|
|
|
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible
|
|
// type and deleter.
|
|
//
|
|
// IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
|
|
// the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
|
|
// form has different requirements on for move-only Deleters. Since this
|
|
// implementation does not support move-only Deleters, we do not need a
|
|
// separate move assignment operator allowing us to avoid one use of SFINAE.
|
|
// You only need to care about this if you modify the implementation of
|
|
// scoped_ptr.
|
|
template <typename U, typename V>
|
|
scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
|
|
COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
|
|
impl_.TakeState(&rhs.impl_);
|
|
return *this;
|
|
}
|
|
|
|
// Reset. Deletes the currently owned object, if any.
|
|
// Then takes ownership of a new object, if given.
|
|
void reset(element_type* p = NULL) { impl_.reset(p); }
|
|
|
|
// Accessors to get the owned object.
|
|
// operator* and operator-> will assert() if there is no current object.
|
|
element_type& operator*() const {
|
|
assert(impl_.get() != NULL);
|
|
return *impl_.get();
|
|
}
|
|
element_type* operator->() const {
|
|
assert(impl_.get() != NULL);
|
|
return impl_.get();
|
|
}
|
|
element_type* get() const { return impl_.get(); }
|
|
|
|
// Access to the deleter.
|
|
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
|
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
|
|
|
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
|
// implicitly convertible to a real bool (which is dangerous).
|
|
//
|
|
// Note that this trick is only safe when the == and != operators
|
|
// are declared explicitly, as otherwise "scoped_ptr1 ==
|
|
// scoped_ptr2" will compile but do the wrong thing (i.e., convert
|
|
// to Testable and then do the comparison).
|
|
private:
|
|
typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
|
|
scoped_ptr::*Testable;
|
|
|
|
public:
|
|
operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
|
|
|
// Comparison operators.
|
|
// These return whether two scoped_ptr refer to the same object, not just to
|
|
// two different but equal objects.
|
|
bool operator==(const element_type* p) const { return impl_.get() == p; }
|
|
bool operator!=(const element_type* p) const { return impl_.get() != p; }
|
|
|
|
// Swap two scoped pointers.
|
|
void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); }
|
|
|
|
// Release a pointer.
|
|
// The return value is the current pointer held by this object.
|
|
// If this object holds a NULL pointer, the return value is NULL.
|
|
// After this operation, this object will hold a NULL pointer,
|
|
// and will not own the object any more.
|
|
element_type* release() WARN_UNUSED_RESULT { return impl_.release(); }
|
|
|
|
// C++98 doesn't support functions templates with default parameters which
|
|
// makes it hard to write a PassAs() that understands converting the deleter
|
|
// while preserving simple calling semantics.
|
|
//
|
|
// Until there is a use case for PassAs() with custom deleters, just ignore
|
|
// the custom deleter.
|
|
template <typename PassAsType>
|
|
scoped_ptr<PassAsType> PassAs() {
|
|
return scoped_ptr<PassAsType>(Pass());
|
|
}
|
|
|
|
private:
|
|
// Needed to reach into |impl_| in the constructor.
|
|
template <typename U, typename V>
|
|
friend class scoped_ptr;
|
|
base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
|
|
|
// Forbidden for API compatibility with std::unique_ptr.
|
|
explicit scoped_ptr(int disallow_construction_from_null);
|
|
|
|
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
|
// doesn't make sense, and if U == T, it still doesn't make sense
|
|
// because you should never have the same object owned by two different
|
|
// scoped_ptrs.
|
|
template <class U>
|
|
bool operator==(scoped_ptr<U> const& p2) const;
|
|
template <class U>
|
|
bool operator!=(scoped_ptr<U> const& p2) const;
|
|
};
|
|
|
|
template <class T, class D>
|
|
class scoped_ptr<T[], D> {
|
|
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
|
|
|
|
public:
|
|
// The element and deleter types.
|
|
typedef T element_type;
|
|
typedef D deleter_type;
|
|
|
|
// Constructor. Defaults to initializing with NULL.
|
|
scoped_ptr() : impl_(NULL) {}
|
|
|
|
// Constructor. Stores the given array. Note that the argument's type
|
|
// must exactly match T*. In particular:
|
|
// - it cannot be a pointer to a type derived from T, because it is
|
|
// inherently unsafe in the general case to access an array through a
|
|
// pointer whose dynamic type does not match its static type (eg., if
|
|
// T and the derived types had different sizes access would be
|
|
// incorrectly calculated). Deletion is also always undefined
|
|
// (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
|
// - it cannot be NULL, because NULL is an integral expression, not a
|
|
// pointer to T. Use the no-argument version instead of explicitly
|
|
// passing NULL.
|
|
// - it cannot be const-qualified differently from T per unique_ptr spec
|
|
// (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
|
// to work around this may use implicit_cast<const T*>().
|
|
// However, because of the first bullet in this comment, users MUST
|
|
// NOT use implicit_cast<Base*>() to upcast the static type of the array.
|
|
explicit scoped_ptr(element_type* array) : impl_(array) {}
|
|
|
|
// Constructor. Move constructor for C++03 move emulation of this type.
|
|
scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {}
|
|
|
|
// operator=. Move operator= for C++03 move emulation of this type.
|
|
scoped_ptr& operator=(RValue rhs) {
|
|
impl_.TakeState(&rhs.object->impl_);
|
|
return *this;
|
|
}
|
|
|
|
// Reset. Deletes the currently owned array, if any.
|
|
// Then takes ownership of a new object, if given.
|
|
void reset(element_type* array = NULL) { impl_.reset(array); }
|
|
|
|
// Accessors to get the owned array.
|
|
element_type& operator[](size_t i) const {
|
|
assert(impl_.get() != NULL);
|
|
return impl_.get()[i];
|
|
}
|
|
element_type* get() const { return impl_.get(); }
|
|
|
|
// Access to the deleter.
|
|
deleter_type& get_deleter() { return impl_.get_deleter(); }
|
|
const deleter_type& get_deleter() const { return impl_.get_deleter(); }
|
|
|
|
// Allow scoped_ptr<element_type> to be used in boolean expressions, but not
|
|
// implicitly convertible to a real bool (which is dangerous).
|
|
private:
|
|
typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type>
|
|
scoped_ptr::*Testable;
|
|
|
|
public:
|
|
operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
|
|
|
|
// Comparison operators.
|
|
// These return whether two scoped_ptr refer to the same object, not just to
|
|
// two different but equal objects.
|
|
bool operator==(element_type* array) const { return impl_.get() == array; }
|
|
bool operator!=(element_type* array) const { return impl_.get() != array; }
|
|
|
|
// Swap two scoped pointers.
|
|
void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); }
|
|
|
|
// Release a pointer.
|
|
// The return value is the current pointer held by this object.
|
|
// If this object holds a NULL pointer, the return value is NULL.
|
|
// After this operation, this object will hold a NULL pointer,
|
|
// and will not own the object any more.
|
|
element_type* release() WARN_UNUSED_RESULT { return impl_.release(); }
|
|
|
|
private:
|
|
// Force element_type to be a complete type.
|
|
enum { type_must_be_complete = sizeof(element_type) };
|
|
|
|
// Actually hold the data.
|
|
base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_;
|
|
|
|
// Disable initialization from any type other than element_type*, by
|
|
// providing a constructor that matches such an initialization, but is
|
|
// private and has no definition. This is disabled because it is not safe to
|
|
// call delete[] on an array whose static type does not match its dynamic
|
|
// type.
|
|
template <typename U>
|
|
explicit scoped_ptr(U* array);
|
|
explicit scoped_ptr(int disallow_construction_from_null);
|
|
|
|
// Disable reset() from any type other than element_type*, for the same
|
|
// reasons as the constructor above.
|
|
template <typename U>
|
|
void reset(U* array);
|
|
void reset(int disallow_reset_from_null);
|
|
|
|
// Forbid comparison of scoped_ptr types. If U != T, it totally
|
|
// doesn't make sense, and if U == T, it still doesn't make sense
|
|
// because you should never have the same object owned by two different
|
|
// scoped_ptrs.
|
|
template <class U>
|
|
bool operator==(scoped_ptr<U> const& p2) const;
|
|
template <class U>
|
|
bool operator!=(scoped_ptr<U> const& p2) const;
|
|
};
|
|
|
|
// Free functions
|
|
template <class T, class D>
|
|
void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
|
|
p1.swap(p2);
|
|
}
|
|
|
|
template <class T, class D>
|
|
bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
|
|
return p1 == p2.get();
|
|
}
|
|
|
|
template <class T, class D>
|
|
bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
|
|
return p1 != p2.get();
|
|
}
|
|
|
|
// A function to convert T* into scoped_ptr<T>
|
|
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
|
|
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
|
|
template <typename T>
|
|
scoped_ptr<T> make_scoped_ptr(T* ptr) {
|
|
return scoped_ptr<T>(ptr);
|
|
}
|
|
|
|
#endif // !USING_CHROMIUM_INCLUDES
|
|
|
|
#endif // CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_
|