mirror of
https://bitbucket.org/chromiumembedded/cef
synced 2025-01-28 01:59:25 +01:00
802 lines
33 KiB
C++
802 lines
33 KiB
C++
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012
|
|
// Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_CEF_CALLBACK_H_
|
|
#define CEF_INCLUDE_BASE_CEF_CALLBACK_H_
|
|
#pragma once
|
|
|
|
#if defined(BASE_CALLBACK_H_)
|
|
// Do nothing if the Chromium header has already been included.
|
|
// This can happen in cases where Chromium code is used directly by the
|
|
// client application. When using Chromium code directly always include
|
|
// the Chromium header first to avoid type conflicts.
|
|
#elif defined(USING_CHROMIUM_INCLUDES)
|
|
// When building CEF include the Chromium header directly.
|
|
#include "base/callback.h"
|
|
#else // !USING_CHROMIUM_INCLUDES
|
|
// The following is substantially similar to the Chromium implementation.
|
|
// If the Chromium implementation diverges the below implementation should be
|
|
// updated to match.
|
|
|
|
#include "include/base/cef_callback_forward.h"
|
|
#include "include/base/cef_template_util.h"
|
|
#include "include/base/internal/cef_callback_internal.h"
|
|
|
|
// NOTE: Header files that do not require the full definition of Callback or
|
|
// Closure should #include "base/cef_callback_forward.h" instead of this file.
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Introduction
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// The templated Callback class is a generalized function object. Together
|
|
// with the Bind() function in bind.h, they provide a type-safe method for
|
|
// performing partial application of functions.
|
|
//
|
|
// Partial application (or "currying") is the process of binding a subset of
|
|
// a function's arguments to produce another function that takes fewer
|
|
// arguments. This can be used to pass around a unit of delayed execution,
|
|
// much like lexical closures are used in other languages. For example, it
|
|
// is used in Chromium code to schedule tasks on different MessageLoops.
|
|
//
|
|
// A callback with no unbound input parameters (base::Callback<void(void)>)
|
|
// is called a base::Closure. Note that this is NOT the same as what other
|
|
// languages refer to as a closure -- it does not retain a reference to its
|
|
// enclosing environment.
|
|
//
|
|
// MEMORY MANAGEMENT AND PASSING
|
|
//
|
|
// The Callback objects themselves should be passed by const-reference, and
|
|
// stored by copy. They internally store their state via a refcounted class
|
|
// and thus do not need to be deleted.
|
|
//
|
|
// The reason to pass via a const-reference is to avoid unnecessary
|
|
// AddRef/Release pairs to the internal state.
|
|
//
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// Quick reference for basic stuff
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// BINDING A BARE FUNCTION
|
|
//
|
|
// int Return5() { return 5; }
|
|
// base::Callback<int(void)> func_cb = base::Bind(&Return5);
|
|
// LOG(INFO) << func_cb.Run(); // Prints 5.
|
|
//
|
|
// BINDING A CLASS METHOD
|
|
//
|
|
// The first argument to bind is the member function to call, the second is
|
|
// the object on which to call it.
|
|
//
|
|
// class Ref : public base::RefCountedThreadSafe<Ref> {
|
|
// public:
|
|
// int Foo() { return 3; }
|
|
// void PrintBye() { LOG(INFO) << "bye."; }
|
|
// };
|
|
// scoped_refptr<Ref> ref = new Ref();
|
|
// base::Callback<void(void)> ref_cb = base::Bind(&Ref::Foo, ref);
|
|
// LOG(INFO) << ref_cb.Run(); // Prints out 3.
|
|
//
|
|
// By default the object must support RefCounted or you will get a compiler
|
|
// error. If you're passing between threads, be sure it's
|
|
// RefCountedThreadSafe! See "Advanced binding of member functions" below if
|
|
// you don't want to use reference counting.
|
|
//
|
|
// RUNNING A CALLBACK
|
|
//
|
|
// Callbacks can be run with their "Run" method, which has the same
|
|
// signature as the template argument to the callback.
|
|
//
|
|
// void DoSomething(const base::Callback<void(int, std::string)>& callback) {
|
|
// callback.Run(5, "hello");
|
|
// }
|
|
//
|
|
// Callbacks can be run more than once (they don't get deleted or marked when
|
|
// run). However, this precludes using base::Passed (see below).
|
|
//
|
|
// void DoSomething(const base::Callback<double(double)>& callback) {
|
|
// double myresult = callback.Run(3.14159);
|
|
// myresult += callback.Run(2.71828);
|
|
// }
|
|
//
|
|
// PASSING UNBOUND INPUT PARAMETERS
|
|
//
|
|
// Unbound parameters are specified at the time a callback is Run(). They are
|
|
// specified in the Callback template type:
|
|
//
|
|
// void MyFunc(int i, const std::string& str) {}
|
|
// base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
|
|
// cb.Run(23, "hello, world");
|
|
//
|
|
// PASSING BOUND INPUT PARAMETERS
|
|
//
|
|
// Bound parameters are specified when you create thee callback as arguments
|
|
// to Bind(). They will be passed to the function and the Run()ner of the
|
|
// callback doesn't see those values or even know that the function it's
|
|
// calling.
|
|
//
|
|
// void MyFunc(int i, const std::string& str) {}
|
|
// base::Callback<void(void)> cb = base::Bind(&MyFunc, 23, "hello world");
|
|
// cb.Run();
|
|
//
|
|
// A callback with no unbound input parameters (base::Callback<void(void)>)
|
|
// is called a base::Closure. So we could have also written:
|
|
//
|
|
// base::Closure cb = base::Bind(&MyFunc, 23, "hello world");
|
|
//
|
|
// When calling member functions, bound parameters just go after the object
|
|
// pointer.
|
|
//
|
|
// base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");
|
|
//
|
|
// PARTIAL BINDING OF PARAMETERS
|
|
//
|
|
// You can specify some parameters when you create the callback, and specify
|
|
// the rest when you execute the callback.
|
|
//
|
|
// void MyFunc(int i, const std::string& str) {}
|
|
// base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23);
|
|
// cb.Run("hello world");
|
|
//
|
|
// When calling a function bound parameters are first, followed by unbound
|
|
// parameters.
|
|
//
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// Quick reference for advanced binding
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// BINDING A CLASS METHOD WITH WEAK POINTERS
|
|
//
|
|
// base::Bind(&MyClass::Foo, GetWeakPtr());
|
|
//
|
|
// The callback will not be run if the object has already been destroyed.
|
|
// DANGER: weak pointers are not threadsafe, so don't use this
|
|
// when passing between threads!
|
|
//
|
|
// BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT
|
|
//
|
|
// base::Bind(&MyClass::Foo, base::Unretained(this));
|
|
//
|
|
// This disables all lifetime management on the object. You're responsible
|
|
// for making sure the object is alive at the time of the call. You break it,
|
|
// you own it!
|
|
//
|
|
// BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS
|
|
//
|
|
// MyClass* myclass = new MyClass;
|
|
// base::Bind(&MyClass::Foo, base::Owned(myclass));
|
|
//
|
|
// The object will be deleted when the callback is destroyed, even if it's
|
|
// not run (like if you post a task during shutdown). Potentially useful for
|
|
// "fire and forget" cases.
|
|
//
|
|
// IGNORING RETURN VALUES
|
|
//
|
|
// Sometimes you want to call a function that returns a value in a callback
|
|
// that doesn't expect a return value.
|
|
//
|
|
// int DoSomething(int arg) { cout << arg << endl; }
|
|
// base::Callback<void<int>) cb =
|
|
// base::Bind(base::IgnoreResult(&DoSomething));
|
|
//
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// Quick reference for binding parameters to Bind()
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Bound parameters are specified as arguments to Bind() and are passed to the
|
|
// function. A callback with no parameters or no unbound parameters is called a
|
|
// Closure (base::Callback<void(void)> and base::Closure are the same thing).
|
|
//
|
|
// PASSING PARAMETERS OWNED BY THE CALLBACK
|
|
//
|
|
// void Foo(int* arg) { cout << *arg << endl; }
|
|
// int* pn = new int(1);
|
|
// base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));
|
|
//
|
|
// The parameter will be deleted when the callback is destroyed, even if it's
|
|
// not run (like if you post a task during shutdown).
|
|
//
|
|
// PASSING PARAMETERS AS A scoped_ptr
|
|
//
|
|
// void TakesOwnership(scoped_ptr<Foo> arg) {}
|
|
// scoped_ptr<Foo> f(new Foo);
|
|
// // f becomes null during the following call.
|
|
// base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f));
|
|
//
|
|
// Ownership of the parameter will be with the callback until the it is run,
|
|
// when ownership is passed to the callback function. This means the callback
|
|
// can only be run once. If the callback is never run, it will delete the
|
|
// object when it's destroyed.
|
|
//
|
|
// PASSING PARAMETERS AS A scoped_refptr
|
|
//
|
|
// void TakesOneRef(scoped_refptr<Foo> arg) {}
|
|
// scoped_refptr<Foo> f(new Foo)
|
|
// base::Closure cb = base::Bind(&TakesOneRef, f);
|
|
//
|
|
// This should "just work." The closure will take a reference as long as it
|
|
// is alive, and another reference will be taken for the called function.
|
|
//
|
|
// PASSING PARAMETERS BY REFERENCE
|
|
//
|
|
// Const references are *copied* unless ConstRef is used. Example:
|
|
//
|
|
// void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
|
|
// int n = 1;
|
|
// base::Closure has_copy = base::Bind(&foo, n);
|
|
// base::Closure has_ref = base::Bind(&foo, base::ConstRef(n));
|
|
// n = 2;
|
|
// foo(n); // Prints "2 0xaaaaaaaaaaaa"
|
|
// has_copy.Run(); // Prints "1 0xbbbbbbbbbbbb"
|
|
// has_ref.Run(); // Prints "2 0xaaaaaaaaaaaa"
|
|
//
|
|
// Normally parameters are copied in the closure. DANGER: ConstRef stores a
|
|
// const reference instead, referencing the original parameter. This means
|
|
// that you must ensure the object outlives the callback!
|
|
//
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation notes
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// WHERE IS THIS DESIGN FROM:
|
|
//
|
|
// The design Callback and Bind is heavily influenced by C++'s
|
|
// tr1::function/tr1::bind, and by the "Google Callback" system used inside
|
|
// Google.
|
|
//
|
|
//
|
|
// HOW THE IMPLEMENTATION WORKS:
|
|
//
|
|
// There are three main components to the system:
|
|
// 1) The Callback classes.
|
|
// 2) The Bind() functions.
|
|
// 3) The arguments wrappers (e.g., Unretained() and ConstRef()).
|
|
//
|
|
// The Callback classes represent a generic function pointer. Internally,
|
|
// it stores a refcounted piece of state that represents the target function
|
|
// and all its bound parameters. Each Callback specialization has a templated
|
|
// constructor that takes an BindState<>*. In the context of the constructor,
|
|
// the static type of this BindState<> pointer uniquely identifies the
|
|
// function it is representing, all its bound parameters, and a Run() method
|
|
// that is capable of invoking the target.
|
|
//
|
|
// Callback's constructor takes the BindState<>* that has the full static type
|
|
// and erases the target function type as well as the types of the bound
|
|
// parameters. It does this by storing a pointer to the specific Run()
|
|
// function, and upcasting the state of BindState<>* to a
|
|
// BindStateBase*. This is safe as long as this BindStateBase pointer
|
|
// is only used with the stored Run() pointer.
|
|
//
|
|
// To BindState<> objects are created inside the Bind() functions.
|
|
// These functions, along with a set of internal templates, are responsible for
|
|
//
|
|
// - Unwrapping the function signature into return type, and parameters
|
|
// - Determining the number of parameters that are bound
|
|
// - Creating the BindState storing the bound parameters
|
|
// - Performing compile-time asserts to avoid error-prone behavior
|
|
// - Returning an Callback<> with an arity matching the number of unbound
|
|
// parameters and that knows the correct refcounting semantics for the
|
|
// target object if we are binding a method.
|
|
//
|
|
// The Bind functions do the above using type-inference, and template
|
|
// specializations.
|
|
//
|
|
// By default Bind() will store copies of all bound parameters, and attempt
|
|
// to refcount a target object if the function being bound is a class method.
|
|
// These copies are created even if the function takes parameters as const
|
|
// references. (Binding to non-const references is forbidden, see bind.h.)
|
|
//
|
|
// To change this behavior, we introduce a set of argument wrappers
|
|
// (e.g., Unretained(), and ConstRef()). These are simple container templates
|
|
// that are passed by value, and wrap a pointer to argument. See the
|
|
// file-level comment in base/bind_helpers.h for more info.
|
|
//
|
|
// These types are passed to the Unwrap() functions, and the MaybeRefcount()
|
|
// functions respectively to modify the behavior of Bind(). The Unwrap()
|
|
// and MaybeRefcount() functions change behavior by doing partial
|
|
// specialization based on whether or not a parameter is a wrapper type.
|
|
//
|
|
// ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium.
|
|
//
|
|
//
|
|
// WHY NOT TR1 FUNCTION/BIND?
|
|
//
|
|
// Direct use of tr1::function and tr1::bind was considered, but ultimately
|
|
// rejected because of the number of copy constructors invocations involved
|
|
// in the binding of arguments during construction, and the forwarding of
|
|
// arguments during invocation. These copies will no longer be an issue in
|
|
// C++0x because C++0x will support rvalue reference allowing for the compiler
|
|
// to avoid these copies. However, waiting for C++0x is not an option.
|
|
//
|
|
// Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the
|
|
// tr1::bind call itself will invoke a non-trivial copy constructor three times
|
|
// for each bound parameter. Also, each when passing a tr1::function, each
|
|
// bound argument will be copied again.
|
|
//
|
|
// In addition to the copies taken at binding and invocation, copying a
|
|
// tr1::function causes a copy to be made of all the bound parameters and
|
|
// state.
|
|
//
|
|
// Furthermore, in Chromium, it is desirable for the Callback to take a
|
|
// reference on a target object when representing a class method call. This
|
|
// is not supported by tr1.
|
|
//
|
|
// Lastly, tr1::function and tr1::bind has a more general and flexible API.
|
|
// This includes things like argument reordering by use of
|
|
// tr1::bind::placeholder, support for non-const reference parameters, and some
|
|
// limited amount of subtyping of the tr1::function object (e.g.,
|
|
// tr1::function<int(int)> is convertible to tr1::function<void(int)>).
|
|
//
|
|
// These are not features that are required in Chromium. Some of them, such as
|
|
// allowing for reference parameters, and subtyping of functions, may actually
|
|
// become a source of errors. Removing support for these features actually
|
|
// allows for a simpler implementation, and a terser Currying API.
|
|
//
|
|
//
|
|
// WHY NOT GOOGLE CALLBACKS?
|
|
//
|
|
// The Google callback system also does not support refcounting. Furthermore,
|
|
// its implementation has a number of strange edge cases with respect to type
|
|
// conversion of its arguments. In particular, the argument's constness must
|
|
// at times match exactly the function signature, or the type-inference might
|
|
// break. Given the above, writing a custom solution was easier.
|
|
//
|
|
//
|
|
// MISSING FUNCTIONALITY
|
|
// - Invoking the return of Bind. Bind(&foo).Run() does not work;
|
|
// - Binding arrays to functions that take a non-const pointer.
|
|
// Example:
|
|
// void Foo(const char* ptr);
|
|
// void Bar(char* ptr);
|
|
// Bind(&Foo, "test");
|
|
// Bind(&Bar, "test"); // This fails because ptr is not const.
|
|
|
|
namespace base {
|
|
|
|
// First, we forward declare the Callback class template. This informs the
|
|
// compiler that the template only has 1 type parameter which is the function
|
|
// signature that the Callback is representing.
|
|
//
|
|
// After this, create template specializations for 0-7 parameters. Note that
|
|
// even though the template typelist grows, the specialization still
|
|
// only has one type: the function signature.
|
|
//
|
|
// If you are thinking of forward declaring Callback in your own header file,
|
|
// please include "base/callback_forward.h" instead.
|
|
template <typename Sig>
|
|
class Callback;
|
|
|
|
namespace cef_internal {
|
|
template <typename Runnable, typename RunType, typename BoundArgsType>
|
|
struct BindState;
|
|
} // namespace cef_internal
|
|
|
|
template <typename R>
|
|
class Callback<R(void)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)();
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run() const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(bind_state_.get());
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(cef_internal::BindStateBase*);
|
|
};
|
|
|
|
template <typename R, typename A1>
|
|
class Callback<R(A1)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(bind_state_.get(), cef_internal::CallbackForward(a1));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType);
|
|
};
|
|
|
|
template <typename R, typename A1, typename A2>
|
|
class Callback<R(A1, A2)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType);
|
|
};
|
|
|
|
template <typename R, typename A1, typename A2, typename A3>
|
|
class Callback<R(A1, A2, A3)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2, A3);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2),
|
|
cef_internal::CallbackForward(a3));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType);
|
|
};
|
|
|
|
template <typename R, typename A1, typename A2, typename A3, typename A4>
|
|
class Callback<R(A1, A2, A3, A4)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2, A3, A4);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2),
|
|
cef_internal::CallbackForward(a3),
|
|
cef_internal::CallbackForward(a4));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType);
|
|
};
|
|
|
|
template <typename R,
|
|
typename A1,
|
|
typename A2,
|
|
typename A3,
|
|
typename A4,
|
|
typename A5>
|
|
class Callback<R(A1, A2, A3, A4, A5)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2, A3, A4, A5);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(
|
|
bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
|
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType);
|
|
};
|
|
|
|
template <typename R,
|
|
typename A1,
|
|
typename A2,
|
|
typename A3,
|
|
typename A4,
|
|
typename A5,
|
|
typename A6>
|
|
class Callback<R(A1, A2, A3, A4, A5, A6)> : public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2, A3, A4, A5, A6);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
|
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(
|
|
bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
|
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5),
|
|
cef_internal::CallbackForward(a6));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A6>::ForwardType);
|
|
};
|
|
|
|
template <typename R,
|
|
typename A1,
|
|
typename A2,
|
|
typename A3,
|
|
typename A4,
|
|
typename A5,
|
|
typename A6,
|
|
typename A7>
|
|
class Callback<R(A1, A2, A3, A4, A5, A6, A7)>
|
|
: public cef_internal::CallbackBase {
|
|
public:
|
|
typedef R(RunType)(A1, A2, A3, A4, A5, A6, A7);
|
|
|
|
Callback() : CallbackBase(NULL) {}
|
|
|
|
// Note that this constructor CANNOT be explicit, and that Bind() CANNOT
|
|
// return the exact Callback<> type. See base/bind.h for details.
|
|
template <typename Runnable, typename BindRunType, typename BoundArgsType>
|
|
Callback(
|
|
cef_internal::BindState<Runnable, BindRunType, BoundArgsType>* bind_state)
|
|
: CallbackBase(bind_state) {
|
|
// Force the assignment to a local variable of PolymorphicInvoke
|
|
// so the compiler will typecheck that the passed in Run() method has
|
|
// the correct type.
|
|
PolymorphicInvoke invoke_func =
|
|
&cef_internal::BindState<Runnable, BindRunType,
|
|
BoundArgsType>::InvokerType::Run;
|
|
polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
|
|
}
|
|
|
|
bool Equals(const Callback& other) const {
|
|
return CallbackBase::Equals(other);
|
|
}
|
|
|
|
R Run(typename cef_internal::CallbackParamTraits<A1>::ForwardType a1,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType a2,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType a3,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType a4,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType a5,
|
|
typename cef_internal::CallbackParamTraits<A6>::ForwardType a6,
|
|
typename cef_internal::CallbackParamTraits<A7>::ForwardType a7) const {
|
|
PolymorphicInvoke f =
|
|
reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
|
|
|
|
return f(
|
|
bind_state_.get(), cef_internal::CallbackForward(a1),
|
|
cef_internal::CallbackForward(a2), cef_internal::CallbackForward(a3),
|
|
cef_internal::CallbackForward(a4), cef_internal::CallbackForward(a5),
|
|
cef_internal::CallbackForward(a6), cef_internal::CallbackForward(a7));
|
|
}
|
|
|
|
private:
|
|
typedef R (*PolymorphicInvoke)(
|
|
cef_internal::BindStateBase*,
|
|
typename cef_internal::CallbackParamTraits<A1>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A2>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A3>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A4>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A5>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A6>::ForwardType,
|
|
typename cef_internal::CallbackParamTraits<A7>::ForwardType);
|
|
};
|
|
|
|
// Syntactic sugar to make Callbacks<void(void)> easier to declare since it
|
|
// will be used in a lot of APIs with delayed execution.
|
|
typedef Callback<void(void)> Closure;
|
|
|
|
} // namespace base
|
|
|
|
#endif // !USING_CHROMIUM_INCLUDES
|
|
|
|
#endif // CEF_INCLUDE_BASE_CEF_CALLBACK_H_
|