mirror of
				https://bitbucket.org/chromiumembedded/cef
				synced 2025-06-05 21:39:12 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			421 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright (c) 2017 Marshall A. Greenblatt. Portions copyright (c) 2011
 | 
						|
// Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//    * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//    * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//    * Neither the name of Google Inc. nor the name Chromium Embedded
 | 
						|
// Framework nor the names of its contributors may be used to endorse
 | 
						|
// or promote products derived from this software without specific prior
 | 
						|
// written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
#ifndef CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
 | 
						|
#define CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
 | 
						|
#pragma once
 | 
						|
 | 
						|
#if defined(USING_CHROMIUM_INCLUDES)
 | 
						|
// When building CEF include the Chromium header directly.
 | 
						|
#include "base/memory/scoped_refptr.h"
 | 
						|
#else  // !USING_CHROMIUM_INCLUDES
 | 
						|
// The following is substantially similar to the Chromium implementation.
 | 
						|
// If the Chromium implementation diverges the below implementation should be
 | 
						|
// updated to match.
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
#include <iosfwd>
 | 
						|
#include <type_traits>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#include "include/base/cef_logging.h"
 | 
						|
 | 
						|
template <class T>
 | 
						|
class scoped_refptr;
 | 
						|
 | 
						|
namespace base {
 | 
						|
 | 
						|
template <class, typename>
 | 
						|
class RefCounted;
 | 
						|
template <class, typename>
 | 
						|
class RefCountedThreadSafe;
 | 
						|
class SequencedTaskRunner;
 | 
						|
class WrappedPromise;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
scoped_refptr<T> AdoptRef(T* t);
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
class BasePromise;
 | 
						|
 | 
						|
}  // namespace internal
 | 
						|
 | 
						|
namespace cef_subtle {
 | 
						|
 | 
						|
enum AdoptRefTag { kAdoptRefTag };
 | 
						|
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
 | 
						|
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
 | 
						|
 | 
						|
template <typename T, typename U, typename V>
 | 
						|
constexpr bool IsRefCountPreferenceOverridden(const T*,
 | 
						|
                                              const RefCounted<U, V>*) {
 | 
						|
  return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
 | 
						|
                       std::decay_t<decltype(U::kRefCountPreference)>>::value;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U, typename V>
 | 
						|
constexpr bool IsRefCountPreferenceOverridden(
 | 
						|
    const T*,
 | 
						|
    const RefCountedThreadSafe<U, V>*) {
 | 
						|
  return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
 | 
						|
                       std::decay_t<decltype(U::kRefCountPreference)>>::value;
 | 
						|
}
 | 
						|
 | 
						|
constexpr bool IsRefCountPreferenceOverridden(...) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace cef_subtle
 | 
						|
 | 
						|
// Creates a scoped_refptr from a raw pointer without incrementing the reference
 | 
						|
// count. Use this only for a newly created object whose reference count starts
 | 
						|
// from 1 instead of 0.
 | 
						|
template <typename T>
 | 
						|
scoped_refptr<T> AdoptRef(T* obj) {
 | 
						|
  using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
 | 
						|
  static_assert(std::is_same<cef_subtle::StartRefCountFromOneTag, Tag>::value,
 | 
						|
                "Use AdoptRef only if the reference count starts from one.");
 | 
						|
 | 
						|
  DCHECK(obj);
 | 
						|
  DCHECK(obj->HasOneRef());
 | 
						|
  obj->Adopted();
 | 
						|
  return scoped_refptr<T>(obj, cef_subtle::kAdoptRefTag);
 | 
						|
}
 | 
						|
 | 
						|
namespace cef_subtle {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
 | 
						|
  return scoped_refptr<T>(obj);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
 | 
						|
  return AdoptRef(obj);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace cef_subtle
 | 
						|
 | 
						|
// Constructs an instance of T, which is a ref counted type, and wraps the
 | 
						|
// object into a scoped_refptr<T>.
 | 
						|
template <typename T, typename... Args>
 | 
						|
scoped_refptr<T> MakeRefCounted(Args&&... args) {
 | 
						|
  T* obj = new T(std::forward<Args>(args)...);
 | 
						|
  return cef_subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
 | 
						|
}
 | 
						|
 | 
						|
// Takes an instance of T, which is a ref counted type, and wraps the object
 | 
						|
// into a scoped_refptr<T>.
 | 
						|
template <typename T>
 | 
						|
scoped_refptr<T> WrapRefCounted(T* t) {
 | 
						|
  return scoped_refptr<T>(t);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace base
 | 
						|
 | 
						|
///
 | 
						|
/// A smart pointer class for reference counted objects.  Use this class instead
 | 
						|
/// of calling AddRef and Release manually on a reference counted object to
 | 
						|
/// avoid common memory leaks caused by forgetting to Release an object
 | 
						|
/// reference. Sample usage:
 | 
						|
///
 | 
						|
/// <pre>
 | 
						|
///   class MyFoo : public RefCounted<MyFoo> {
 | 
						|
///    ...
 | 
						|
///    private:
 | 
						|
///     friend class RefCounted<MyFoo>;  // Allow destruction by RefCounted<>.
 | 
						|
///     ~MyFoo();                        // Destructor must be
 | 
						|
///     private/protected.
 | 
						|
///   };
 | 
						|
///
 | 
						|
///   void some_function() {
 | 
						|
///     scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
 | 
						|
///     foo->Method(param);
 | 
						|
///     // |foo| is released when this function returns
 | 
						|
///   }
 | 
						|
///
 | 
						|
///   void some_other_function() {
 | 
						|
///     scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
 | 
						|
///     ...
 | 
						|
///     foo.reset();  // explicitly releases |foo|
 | 
						|
///     ...
 | 
						|
///     if (foo)
 | 
						|
///       foo->Method(param);
 | 
						|
///   }
 | 
						|
/// </pre>
 | 
						|
///
 | 
						|
/// The above examples show how scoped_refptr<T> acts like a pointer to T.
 | 
						|
/// Given two scoped_refptr<T> classes, it is also possible to exchange
 | 
						|
/// references between the two objects, like so:
 | 
						|
///
 | 
						|
/// <pre>
 | 
						|
///   {
 | 
						|
///     scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
 | 
						|
///     scoped_refptr<MyFoo> b;
 | 
						|
///
 | 
						|
///     b.swap(a);
 | 
						|
///     // now, |b| references the MyFoo object, and |a| references nullptr.
 | 
						|
///   }
 | 
						|
/// </pre>
 | 
						|
///
 | 
						|
/// To make both |a| and |b| in the above example reference the same MyFoo
 | 
						|
/// object, simply use the assignment operator:
 | 
						|
///
 | 
						|
/// <pre>
 | 
						|
///   {
 | 
						|
///     scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
 | 
						|
///     scoped_refptr<MyFoo> b;
 | 
						|
///
 | 
						|
///     b = a;
 | 
						|
///     // now, |a| and |b| each own a reference to the same MyFoo object.
 | 
						|
///   }
 | 
						|
/// </pre>
 | 
						|
///
 | 
						|
/// Also see Chromium's ownership and calling conventions:
 | 
						|
/// https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
 | 
						|
/// Specifically:
 | 
						|
///   If the function (at least sometimes) takes a ref on a refcounted object,
 | 
						|
///   declare the param as scoped_refptr<T>. The caller can decide whether it
 | 
						|
///   wishes to transfer ownership (by calling std::move(t) when passing t) or
 | 
						|
///   retain its ref (by simply passing t directly).
 | 
						|
///   In other words, use scoped_refptr like you would a std::unique_ptr except
 | 
						|
///   in the odd case where it's required to hold on to a ref while handing one
 | 
						|
///   to another component (if a component merely needs to use t on the stack
 | 
						|
///   without keeping a ref: pass t as a raw T*).
 | 
						|
///
 | 
						|
template <class T>
 | 
						|
class TRIVIAL_ABI scoped_refptr {
 | 
						|
 public:
 | 
						|
  typedef T element_type;
 | 
						|
 | 
						|
  constexpr scoped_refptr() = default;
 | 
						|
 | 
						|
  // Allow implicit construction from nullptr.
 | 
						|
  constexpr scoped_refptr(std::nullptr_t) {}
 | 
						|
 | 
						|
  // Constructs from a raw pointer. Note that this constructor allows implicit
 | 
						|
  // conversion from T* to scoped_refptr<T> which is strongly discouraged. If
 | 
						|
  // you are creating a new ref-counted object please use
 | 
						|
  // base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you
 | 
						|
  // should move or copy construct from an existing scoped_refptr<T> to the
 | 
						|
  // ref-counted object.
 | 
						|
  scoped_refptr(T* p) : ptr_(p) {
 | 
						|
    if (ptr_) {
 | 
						|
      AddRef(ptr_);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy constructor. This is required in addition to the copy conversion
 | 
						|
  // constructor below.
 | 
						|
  scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
 | 
						|
 | 
						|
  // Copy conversion constructor.
 | 
						|
  template <typename U,
 | 
						|
            typename = typename std::enable_if<
 | 
						|
                std::is_convertible<U*, T*>::value>::type>
 | 
						|
  scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
 | 
						|
 | 
						|
  // Move constructor. This is required in addition to the move conversion
 | 
						|
  // constructor below.
 | 
						|
  scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
 | 
						|
 | 
						|
  // Move conversion constructor.
 | 
						|
  template <typename U,
 | 
						|
            typename = typename std::enable_if<
 | 
						|
                std::is_convertible<U*, T*>::value>::type>
 | 
						|
  scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
 | 
						|
    r.ptr_ = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  ~scoped_refptr() {
 | 
						|
    static_assert(!base::cef_subtle::IsRefCountPreferenceOverridden(
 | 
						|
                      static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
 | 
						|
                  "It's unsafe to override the ref count preference."
 | 
						|
                  " Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
 | 
						|
                  " from subclasses.");
 | 
						|
    if (ptr_) {
 | 
						|
      Release(ptr_);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  T* get() const { return ptr_; }
 | 
						|
 | 
						|
  T& operator*() const {
 | 
						|
    DCHECK(ptr_);
 | 
						|
    return *ptr_;
 | 
						|
  }
 | 
						|
 | 
						|
  T* operator->() const {
 | 
						|
    DCHECK(ptr_);
 | 
						|
    return ptr_;
 | 
						|
  }
 | 
						|
 | 
						|
  scoped_refptr& operator=(std::nullptr_t) {
 | 
						|
    reset();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
 | 
						|
 | 
						|
  // Unified assignment operator.
 | 
						|
  scoped_refptr& operator=(scoped_refptr r) noexcept {
 | 
						|
    swap(r);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sets managed object to null and releases reference to the previous managed
 | 
						|
  // object, if it existed.
 | 
						|
  void reset() { scoped_refptr().swap(*this); }
 | 
						|
 | 
						|
  // Returns the owned pointer (if any), releasing ownership to the caller. The
 | 
						|
  // caller is responsible for managing the lifetime of the reference.
 | 
						|
  [[nodiscard]] T* release();
 | 
						|
 | 
						|
  void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
 | 
						|
 | 
						|
  explicit operator bool() const { return ptr_ != nullptr; }
 | 
						|
 | 
						|
  template <typename U>
 | 
						|
  bool operator==(const scoped_refptr<U>& rhs) const {
 | 
						|
    return ptr_ == rhs.get();
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename U>
 | 
						|
  bool operator!=(const scoped_refptr<U>& rhs) const {
 | 
						|
    return !operator==(rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename U>
 | 
						|
  bool operator<(const scoped_refptr<U>& rhs) const {
 | 
						|
    return ptr_ < rhs.get();
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  T* ptr_ = nullptr;
 | 
						|
 | 
						|
 private:
 | 
						|
  template <typename U>
 | 
						|
  friend scoped_refptr<U> base::AdoptRef(U*);
 | 
						|
  friend class ::base::SequencedTaskRunner;
 | 
						|
 | 
						|
  // Friend access so these classes can use the constructor below as part of a
 | 
						|
  // binary size optimization.
 | 
						|
  friend class ::base::internal::BasePromise;
 | 
						|
  friend class ::base::WrappedPromise;
 | 
						|
 | 
						|
  scoped_refptr(T* p, base::cef_subtle::AdoptRefTag) : ptr_(p) {}
 | 
						|
 | 
						|
  // Friend required for move constructors that set r.ptr_ to null.
 | 
						|
  template <typename U>
 | 
						|
  friend class scoped_refptr;
 | 
						|
 | 
						|
  // Non-inline helpers to allow:
 | 
						|
  //     class Opaque;
 | 
						|
  //     extern template class scoped_refptr<Opaque>;
 | 
						|
  // Otherwise the compiler will complain that Opaque is an incomplete type.
 | 
						|
  static void AddRef(T* ptr);
 | 
						|
  static void Release(T* ptr);
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
T* scoped_refptr<T>::release() {
 | 
						|
  T* ptr = ptr_;
 | 
						|
  ptr_ = nullptr;
 | 
						|
  return ptr;
 | 
						|
}
 | 
						|
 | 
						|
// static
 | 
						|
template <typename T>
 | 
						|
void scoped_refptr<T>::AddRef(T* ptr) {
 | 
						|
  ptr->AddRef();
 | 
						|
}
 | 
						|
 | 
						|
// static
 | 
						|
template <typename T>
 | 
						|
void scoped_refptr<T>::Release(T* ptr) {
 | 
						|
  ptr->Release();
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
 | 
						|
  return lhs.get() == rhs;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
 | 
						|
  return lhs == rhs.get();
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
 | 
						|
  return !static_cast<bool>(lhs);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
 | 
						|
  return !static_cast<bool>(rhs);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
 | 
						|
  return !operator==(lhs, rhs);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
 | 
						|
  return !operator==(lhs, rhs);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
 | 
						|
  return !operator==(lhs, null);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
 | 
						|
  return !operator==(null, rhs);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
 | 
						|
  return out << p.get();
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
 | 
						|
  lhs.swap(rhs);
 | 
						|
}
 | 
						|
 | 
						|
#endif  // !USING_CHROMIUM_INCLUDES
 | 
						|
 | 
						|
#endif  // CEF_INCLUDE_BASE_CEF_SCOPED_REFPTR_H_
 |