193 lines
7.1 KiB
C++
193 lines
7.1 KiB
C++
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
|
|
// Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_CEF_TEMPLATE_UTIL_H_
|
|
#define CEF_INCLUDE_BASE_CEF_TEMPLATE_UTIL_H_
|
|
#pragma once
|
|
|
|
#if defined(BASE_TEMPLATE_UTIL_H_)
|
|
// Do nothing if the Chromium header has already been included.
|
|
// This can happen in cases where Chromium code is used directly by the
|
|
// client application. When using Chromium code directly always include
|
|
// the Chromium header first to avoid type conflicts.
|
|
#elif defined(BUILDING_CEF_SHARED)
|
|
// When building CEF include the Chromium header directly.
|
|
#include "base/template_util.h"
|
|
#else // !BUILDING_CEF_SHARED
|
|
// The following is substantially similar to the Chromium implementation.
|
|
// If the Chromium implementation diverges the below implementation should be
|
|
// updated to match.
|
|
|
|
#include <cstddef> // For size_t.
|
|
|
|
#include "include/base/cef_build.h"
|
|
|
|
namespace base {
|
|
|
|
// template definitions from tr1
|
|
|
|
template<class T, T v>
|
|
struct integral_constant {
|
|
static const T value = v;
|
|
typedef T value_type;
|
|
typedef integral_constant<T, v> type;
|
|
};
|
|
|
|
template <class T, T v> const T integral_constant<T, v>::value;
|
|
|
|
typedef integral_constant<bool, true> true_type;
|
|
typedef integral_constant<bool, false> false_type;
|
|
|
|
template <class T> struct is_pointer : false_type {};
|
|
template <class T> struct is_pointer<T*> : true_type {};
|
|
|
|
// Member function pointer detection up to four params. Add more as needed
|
|
// below. This is built-in to C++ 11, and we can remove this when we switch.
|
|
template<typename T>
|
|
struct is_member_function_pointer : false_type {};
|
|
|
|
template <typename R, typename Z>
|
|
struct is_member_function_pointer<R(Z::*)()> : true_type {};
|
|
template <typename R, typename Z>
|
|
struct is_member_function_pointer<R(Z::*)() const> : true_type {};
|
|
|
|
template <typename R, typename Z, typename A>
|
|
struct is_member_function_pointer<R(Z::*)(A)> : true_type {};
|
|
template <typename R, typename Z, typename A>
|
|
struct is_member_function_pointer<R(Z::*)(A) const> : true_type {};
|
|
|
|
template <typename R, typename Z, typename A, typename B>
|
|
struct is_member_function_pointer<R(Z::*)(A, B)> : true_type {};
|
|
template <typename R, typename Z, typename A, typename B>
|
|
struct is_member_function_pointer<R(Z::*)(A, B) const> : true_type {};
|
|
|
|
template <typename R, typename Z, typename A, typename B, typename C>
|
|
struct is_member_function_pointer<R(Z::*)(A, B, C)> : true_type {};
|
|
template <typename R, typename Z, typename A, typename B, typename C>
|
|
struct is_member_function_pointer<R(Z::*)(A, B, C) const> : true_type {};
|
|
|
|
template <typename R, typename Z, typename A, typename B, typename C,
|
|
typename D>
|
|
struct is_member_function_pointer<R(Z::*)(A, B, C, D)> : true_type {};
|
|
template <typename R, typename Z, typename A, typename B, typename C,
|
|
typename D>
|
|
struct is_member_function_pointer<R(Z::*)(A, B, C, D) const> : true_type {};
|
|
|
|
|
|
template <class T, class U> struct is_same : public false_type {};
|
|
template <class T> struct is_same<T,T> : true_type {};
|
|
|
|
template<class> struct is_array : public false_type {};
|
|
template<class T, size_t n> struct is_array<T[n]> : public true_type {};
|
|
template<class T> struct is_array<T[]> : public true_type {};
|
|
|
|
template <class T> struct is_non_const_reference : false_type {};
|
|
template <class T> struct is_non_const_reference<T&> : true_type {};
|
|
template <class T> struct is_non_const_reference<const T&> : false_type {};
|
|
|
|
template <class T> struct is_const : false_type {};
|
|
template <class T> struct is_const<const T> : true_type {};
|
|
|
|
template <class T> struct is_void : false_type {};
|
|
template <> struct is_void<void> : true_type {};
|
|
|
|
namespace internal {
|
|
|
|
// Types YesType and NoType are guaranteed such that sizeof(YesType) <
|
|
// sizeof(NoType).
|
|
typedef char YesType;
|
|
|
|
struct NoType {
|
|
YesType dummy[2];
|
|
};
|
|
|
|
// This class is an implementation detail for is_convertible, and you
|
|
// don't need to know how it works to use is_convertible. For those
|
|
// who care: we declare two different functions, one whose argument is
|
|
// of type To and one with a variadic argument list. We give them
|
|
// return types of different size, so we can use sizeof to trick the
|
|
// compiler into telling us which function it would have chosen if we
|
|
// had called it with an argument of type From. See Alexandrescu's
|
|
// _Modern C++ Design_ for more details on this sort of trick.
|
|
|
|
struct ConvertHelper {
|
|
template <typename To>
|
|
static YesType Test(To);
|
|
|
|
template <typename To>
|
|
static NoType Test(...);
|
|
|
|
template <typename From>
|
|
static From& Create();
|
|
};
|
|
|
|
// Used to determine if a type is a struct/union/class. Inspired by Boost's
|
|
// is_class type_trait implementation.
|
|
struct IsClassHelper {
|
|
template <typename C>
|
|
static YesType Test(void(C::*)(void));
|
|
|
|
template <typename C>
|
|
static NoType Test(...);
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Inherits from true_type if From is convertible to To, false_type otherwise.
|
|
//
|
|
// Note that if the type is convertible, this will be a true_type REGARDLESS
|
|
// of whether or not the conversion would emit a warning.
|
|
template <typename From, typename To>
|
|
struct is_convertible
|
|
: integral_constant<bool,
|
|
sizeof(internal::ConvertHelper::Test<To>(
|
|
internal::ConvertHelper::Create<From>())) ==
|
|
sizeof(internal::YesType)> {
|
|
};
|
|
|
|
template <typename T>
|
|
struct is_class
|
|
: integral_constant<bool,
|
|
sizeof(internal::IsClassHelper::Test<T>(0)) ==
|
|
sizeof(internal::YesType)> {
|
|
};
|
|
|
|
template<bool B, class T = void>
|
|
struct enable_if {};
|
|
|
|
template<class T>
|
|
struct enable_if<true, T> { typedef T type; };
|
|
|
|
} // namespace base
|
|
|
|
#endif // !BUILDING_CEF_SHARED
|
|
|
|
#endif // CEF_INCLUDE_BASE_CEF_TEMPLATE_UTIL_H_
|