mirror of
https://bitbucket.org/chromiumembedded/cef
synced 2025-01-01 04:18:46 +01:00
326 lines
11 KiB
C++
326 lines
11 KiB
C++
// Copyright (c) 2013 Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Do not include this header file directly. Use base/cef_atomicops.h
|
|
// instead.
|
|
//
|
|
// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|
|
#define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|
|
|
|
#if defined(OS_QNX)
|
|
#include <sys/cpuinline.h>
|
|
#endif
|
|
|
|
namespace base {
|
|
namespace subtle {
|
|
|
|
// Memory barriers on ARM are funky, but the kernel is here to help:
|
|
//
|
|
// * ARMv5 didn't support SMP, there is no memory barrier instruction at
|
|
// all on this architecture, or when targeting its machine code.
|
|
//
|
|
// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
|
|
// writing a random value to a very specific coprocessor register.
|
|
//
|
|
// * On ARMv7, the "dmb" instruction is used to perform a full memory
|
|
// barrier (though writing to the co-processor will still work).
|
|
// However, on single core devices (e.g. Nexus One, or Nexus S),
|
|
// this instruction will take up to 200 ns, which is huge, even though
|
|
// it's completely un-needed on these devices.
|
|
//
|
|
// * There is no easy way to determine at runtime if the device is
|
|
// single or multi-core. However, the kernel provides a useful helper
|
|
// function at a fixed memory address (0xffff0fa0), which will always
|
|
// perform a memory barrier in the most efficient way. I.e. on single
|
|
// core devices, this is an empty function that exits immediately.
|
|
// On multi-core devices, it implements a full memory barrier.
|
|
//
|
|
// * This source could be compiled to ARMv5 machine code that runs on a
|
|
// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
|
|
// are needed for correct execution. Always call the kernel helper, even
|
|
// when targeting ARMv5TE.
|
|
//
|
|
|
|
inline void MemoryBarrier() {
|
|
#if defined(OS_LINUX) || defined(OS_ANDROID)
|
|
// Note: This is a function call, which is also an implicit compiler barrier.
|
|
typedef void (*KernelMemoryBarrierFunc)();
|
|
((KernelMemoryBarrierFunc)0xffff0fa0)();
|
|
#elif defined(OS_QNX)
|
|
__cpu_membarrier();
|
|
#else
|
|
#error MemoryBarrier() is not implemented on this platform.
|
|
#endif
|
|
}
|
|
|
|
// An ARM toolchain would only define one of these depending on which
|
|
// variant of the target architecture is being used. This tests against
|
|
// any known ARMv6 or ARMv7 variant, where it is possible to directly
|
|
// use ldrex/strex instructions to implement fast atomic operations.
|
|
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
|
|
defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
|
|
defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
|
|
defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
|
|
defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
|
|
|
|
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
Atomic32 prev_value;
|
|
int reloop;
|
|
do {
|
|
// The following is equivalent to:
|
|
//
|
|
// prev_value = LDREX(ptr)
|
|
// reloop = 0
|
|
// if (prev_value != old_value)
|
|
// reloop = STREX(ptr, new_value)
|
|
__asm__ __volatile__(
|
|
" ldrex %0, [%3]\n"
|
|
" mov %1, #0\n"
|
|
" cmp %0, %4\n"
|
|
#ifdef __thumb2__
|
|
" it eq\n"
|
|
#endif
|
|
" strexeq %1, %5, [%3]\n"
|
|
: "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
|
|
: "r"(ptr), "r"(old_value), "r"(new_value)
|
|
: "cc", "memory");
|
|
} while (reloop != 0);
|
|
return prev_value;
|
|
}
|
|
|
|
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
|
MemoryBarrier();
|
|
return result;
|
|
}
|
|
|
|
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
MemoryBarrier();
|
|
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
|
}
|
|
|
|
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
|
Atomic32 increment) {
|
|
Atomic32 value;
|
|
int reloop;
|
|
do {
|
|
// Equivalent to:
|
|
//
|
|
// value = LDREX(ptr)
|
|
// value += increment
|
|
// reloop = STREX(ptr, value)
|
|
//
|
|
__asm__ __volatile__(
|
|
" ldrex %0, [%3]\n"
|
|
" add %0, %0, %4\n"
|
|
" strex %1, %0, [%3]\n"
|
|
: "=&r"(value), "=&r"(reloop), "+m"(*ptr)
|
|
: "r"(ptr), "r"(increment)
|
|
: "cc", "memory");
|
|
} while (reloop);
|
|
return value;
|
|
}
|
|
|
|
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
|
Atomic32 increment) {
|
|
// TODO(digit): Investigate if it's possible to implement this with
|
|
// a single MemoryBarrier() operation between the LDREX and STREX.
|
|
// See http://crbug.com/246514
|
|
MemoryBarrier();
|
|
Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
|
|
MemoryBarrier();
|
|
return result;
|
|
}
|
|
|
|
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
|
Atomic32 new_value) {
|
|
Atomic32 old_value;
|
|
int reloop;
|
|
do {
|
|
// old_value = LDREX(ptr)
|
|
// reloop = STREX(ptr, new_value)
|
|
__asm__ __volatile__(
|
|
" ldrex %0, [%3]\n"
|
|
" strex %1, %4, [%3]\n"
|
|
: "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
|
|
: "r"(ptr), "r"(new_value)
|
|
: "cc", "memory");
|
|
} while (reloop != 0);
|
|
return old_value;
|
|
}
|
|
|
|
// This tests against any known ARMv5 variant.
|
|
#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
|
|
defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
|
|
|
|
// The kernel also provides a helper function to perform an atomic
|
|
// compare-and-swap operation at the hard-wired address 0xffff0fc0.
|
|
// On ARMv5, this is implemented by a special code path that the kernel
|
|
// detects and treats specially when thread pre-emption happens.
|
|
// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
|
|
//
|
|
// Note that this always perform a full memory barrier, there is no
|
|
// need to add calls MemoryBarrier() before or after it. It also
|
|
// returns 0 on success, and 1 on exit.
|
|
//
|
|
// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
|
|
// use newer kernel revisions, so this should not be a concern.
|
|
namespace {
|
|
|
|
inline int LinuxKernelCmpxchg(Atomic32 old_value,
|
|
Atomic32 new_value,
|
|
volatile Atomic32* ptr) {
|
|
typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
|
|
return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
Atomic32 prev_value;
|
|
for (;;) {
|
|
prev_value = *ptr;
|
|
if (prev_value != old_value)
|
|
return prev_value;
|
|
if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
|
return old_value;
|
|
}
|
|
}
|
|
|
|
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
|
Atomic32 new_value) {
|
|
Atomic32 old_value;
|
|
do {
|
|
old_value = *ptr;
|
|
} while (LinuxKernelCmpxchg(old_value, new_value, ptr));
|
|
return old_value;
|
|
}
|
|
|
|
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
|
Atomic32 increment) {
|
|
return Barrier_AtomicIncrement(ptr, increment);
|
|
}
|
|
|
|
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
|
Atomic32 increment) {
|
|
for (;;) {
|
|
// Atomic exchange the old value with an incremented one.
|
|
Atomic32 old_value = *ptr;
|
|
Atomic32 new_value = old_value + increment;
|
|
if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
|
|
// The exchange took place as expected.
|
|
return new_value;
|
|
}
|
|
// Otherwise, *ptr changed mid-loop and we need to retry.
|
|
}
|
|
}
|
|
|
|
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
Atomic32 prev_value;
|
|
for (;;) {
|
|
prev_value = *ptr;
|
|
if (prev_value != old_value) {
|
|
// Always ensure acquire semantics.
|
|
MemoryBarrier();
|
|
return prev_value;
|
|
}
|
|
if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
|
return old_value;
|
|
}
|
|
}
|
|
|
|
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
|
Atomic32 old_value,
|
|
Atomic32 new_value) {
|
|
// This could be implemented as:
|
|
// MemoryBarrier();
|
|
// return NoBarrier_CompareAndSwap();
|
|
//
|
|
// But would use 3 barriers per succesful CAS. To save performance,
|
|
// use Acquire_CompareAndSwap(). Its implementation guarantees that:
|
|
// - A succesful swap uses only 2 barriers (in the kernel helper).
|
|
// - An early return due to (prev_value != old_value) performs
|
|
// a memory barrier with no store, which is equivalent to the
|
|
// generic implementation above.
|
|
return Acquire_CompareAndSwap(ptr, old_value, new_value);
|
|
}
|
|
|
|
#else
|
|
#error "Your CPU's ARM architecture is not supported yet"
|
|
#endif
|
|
|
|
// NOTE: Atomicity of the following load and store operations is only
|
|
// guaranteed in case of 32-bit alignement of |ptr| values.
|
|
|
|
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
|
*ptr = value;
|
|
}
|
|
|
|
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
|
*ptr = value;
|
|
MemoryBarrier();
|
|
}
|
|
|
|
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
|
MemoryBarrier();
|
|
*ptr = value;
|
|
}
|
|
|
|
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
|
return *ptr;
|
|
}
|
|
|
|
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
|
Atomic32 value = *ptr;
|
|
MemoryBarrier();
|
|
return value;
|
|
}
|
|
|
|
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
|
|
MemoryBarrier();
|
|
return *ptr;
|
|
}
|
|
|
|
} // namespace base::subtle
|
|
} // namespace base
|
|
|
|
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
|