mirror of
				https://bitbucket.org/chromiumembedded/cef
				synced 2025-06-05 21:39:12 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			580 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			580 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
 | 
						|
// Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//    * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//    * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//    * Neither the name of Google Inc. nor the name Chromium Embedded
 | 
						|
// Framework nor the names of its contributors may be used to endorse
 | 
						|
// or promote products derived from this software without specific prior
 | 
						|
// written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
// This defines a set of argument wrappers and related factory methods that
 | 
						|
// can be used specify the refcounting and reference semantics of arguments
 | 
						|
// that are bound by the Bind() function in base/bind.h.
 | 
						|
//
 | 
						|
// It also defines a set of simple functions and utilities that people want
 | 
						|
// when using Callback<> and Bind().
 | 
						|
//
 | 
						|
//
 | 
						|
// ARGUMENT BINDING WRAPPERS
 | 
						|
//
 | 
						|
// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
 | 
						|
// base::ConstRef(), and base::IgnoreResult().
 | 
						|
//
 | 
						|
// Unretained() allows Bind() to bind a non-refcounted class, and to disable
 | 
						|
// refcounting on arguments that are refcounted objects.
 | 
						|
//
 | 
						|
// Owned() transfers ownership of an object to the Callback resulting from
 | 
						|
// bind; the object will be deleted when the Callback is deleted.
 | 
						|
//
 | 
						|
// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
 | 
						|
// through a Callback. Logically, this signifies a destructive transfer of
 | 
						|
// the state of the argument into the target function.  Invoking
 | 
						|
// Callback::Run() twice on a Callback that was created with a Passed()
 | 
						|
// argument will CHECK() because the first invocation would have already
 | 
						|
// transferred ownership to the target function.
 | 
						|
//
 | 
						|
// ConstRef() allows binding a constant reference to an argument rather
 | 
						|
// than a copy.
 | 
						|
//
 | 
						|
// IgnoreResult() is used to adapt a function or Callback with a return type to
 | 
						|
// one with a void return. This is most useful if you have a function with,
 | 
						|
// say, a pesky ignorable bool return that you want to use with PostTask or
 | 
						|
// something else that expect a Callback with a void return.
 | 
						|
//
 | 
						|
// EXAMPLE OF Unretained():
 | 
						|
//
 | 
						|
//   class Foo {
 | 
						|
//    public:
 | 
						|
//     void func() { cout << "Foo:f" << endl; }
 | 
						|
//   };
 | 
						|
//
 | 
						|
//   // In some function somewhere.
 | 
						|
//   Foo foo;
 | 
						|
//   Closure foo_callback =
 | 
						|
//       Bind(&Foo::func, Unretained(&foo));
 | 
						|
//   foo_callback.Run();  // Prints "Foo:f".
 | 
						|
//
 | 
						|
// Without the Unretained() wrapper on |&foo|, the above call would fail
 | 
						|
// to compile because Foo does not support the AddRef() and Release() methods.
 | 
						|
//
 | 
						|
//
 | 
						|
// EXAMPLE OF Owned():
 | 
						|
//
 | 
						|
//   void foo(int* arg) { cout << *arg << endl }
 | 
						|
//
 | 
						|
//   int* pn = new int(1);
 | 
						|
//   Closure foo_callback = Bind(&foo, Owned(pn));
 | 
						|
//
 | 
						|
//   foo_callback.Run();  // Prints "1"
 | 
						|
//   foo_callback.Run();  // Prints "1"
 | 
						|
//   *n = 2;
 | 
						|
//   foo_callback.Run();  // Prints "2"
 | 
						|
//
 | 
						|
//   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
 | 
						|
//                          // |foo_callback| goes out of scope.
 | 
						|
//
 | 
						|
// Without Owned(), someone would have to know to delete |pn| when the last
 | 
						|
// reference to the Callback is deleted.
 | 
						|
//
 | 
						|
//
 | 
						|
// EXAMPLE OF ConstRef():
 | 
						|
//
 | 
						|
//   void foo(int arg) { cout << arg << endl }
 | 
						|
//
 | 
						|
//   int n = 1;
 | 
						|
//   Closure no_ref = Bind(&foo, n);
 | 
						|
//   Closure has_ref = Bind(&foo, ConstRef(n));
 | 
						|
//
 | 
						|
//   no_ref.Run();  // Prints "1"
 | 
						|
//   has_ref.Run();  // Prints "1"
 | 
						|
//
 | 
						|
//   n = 2;
 | 
						|
//   no_ref.Run();  // Prints "1"
 | 
						|
//   has_ref.Run();  // Prints "2"
 | 
						|
//
 | 
						|
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
 | 
						|
// its bound callbacks.
 | 
						|
//
 | 
						|
//
 | 
						|
// EXAMPLE OF IgnoreResult():
 | 
						|
//
 | 
						|
//   int DoSomething(int arg) { cout << arg << endl; }
 | 
						|
//
 | 
						|
//   // Assign to a Callback with a void return type.
 | 
						|
//   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
 | 
						|
//   cb->Run(1);  // Prints "1".
 | 
						|
//
 | 
						|
//   // Prints "1" on |ml|.
 | 
						|
//   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
 | 
						|
//
 | 
						|
//
 | 
						|
// EXAMPLE OF Passed():
 | 
						|
//
 | 
						|
//   void TakesOwnership(scoped_ptr<Foo> arg) { }
 | 
						|
//   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
 | 
						|
//
 | 
						|
//   scoped_ptr<Foo> f(new Foo());
 | 
						|
//
 | 
						|
//   // |cb| is given ownership of Foo(). |f| is now NULL.
 | 
						|
//   // You can use f.Pass() in place of &f, but it's more verbose.
 | 
						|
//   Closure cb = Bind(&TakesOwnership, Passed(&f));
 | 
						|
//
 | 
						|
//   // Run was never called so |cb| still owns Foo() and deletes
 | 
						|
//   // it on Reset().
 | 
						|
//   cb.Reset();
 | 
						|
//
 | 
						|
//   // |cb| is given a new Foo created by CreateFoo().
 | 
						|
//   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
 | 
						|
//
 | 
						|
//   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
 | 
						|
//   // no longer owns Foo() and, if reset, would not delete Foo().
 | 
						|
//   cb.Run();  // Foo() is now transferred to |arg| and deleted.
 | 
						|
//   cb.Run();  // This CHECK()s since Foo() already been used once.
 | 
						|
//
 | 
						|
// Passed() is particularly useful with PostTask() when you are transferring
 | 
						|
// ownership of an argument into a task, but don't necessarily know if the
 | 
						|
// task will always be executed. This can happen if the task is cancellable
 | 
						|
// or if it is posted to a MessageLoopProxy.
 | 
						|
//
 | 
						|
//
 | 
						|
// SIMPLE FUNCTIONS AND UTILITIES.
 | 
						|
//
 | 
						|
//   DoNothing() - Useful for creating a Closure that does nothing when called.
 | 
						|
//   DeletePointer<T>() - Useful for creating a Closure that will delete a
 | 
						|
//                        pointer when invoked. Only use this when necessary.
 | 
						|
//                        In most cases MessageLoop::DeleteSoon() is a better
 | 
						|
//                        fit.
 | 
						|
 | 
						|
#ifndef CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
 | 
						|
#define CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
 | 
						|
#pragma once
 | 
						|
 | 
						|
#if defined(BASE_BIND_HELPERS_H_)
 | 
						|
// Do nothing if the Chromium header has already been included.
 | 
						|
// This can happen in cases where Chromium code is used directly by the
 | 
						|
// client application. When using Chromium code directly always include
 | 
						|
// the Chromium header first to avoid type conflicts.
 | 
						|
#elif defined(USING_CHROMIUM_INCLUDES)
 | 
						|
// When building CEF include the Chromium header directly.
 | 
						|
#include "base/bind_helpers.h"
 | 
						|
#else  // !USING_CHROMIUM_INCLUDES
 | 
						|
// The following is substantially similar to the Chromium implementation.
 | 
						|
// If the Chromium implementation diverges the below implementation should be
 | 
						|
// updated to match.
 | 
						|
 | 
						|
#include "include/base/cef_basictypes.h"
 | 
						|
#include "include/base/cef_callback.h"
 | 
						|
#include "include/base/cef_template_util.h"
 | 
						|
#include "include/base/cef_weak_ptr.h"
 | 
						|
 | 
						|
namespace base {
 | 
						|
namespace cef_internal {
 | 
						|
 | 
						|
// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
 | 
						|
// for the existence of AddRef() and Release() functions of the correct
 | 
						|
// signature.
 | 
						|
//
 | 
						|
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
 | 
						|
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
 | 
						|
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
 | 
						|
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
 | 
						|
//
 | 
						|
// The last link in particular show the method used below.
 | 
						|
//
 | 
						|
// For SFINAE to work with inherited methods, we need to pull some extra tricks
 | 
						|
// with multiple inheritance.  In the more standard formulation, the overloads
 | 
						|
// of Check would be:
 | 
						|
//
 | 
						|
//   template <typename C>
 | 
						|
//   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
 | 
						|
//
 | 
						|
//   template <typename C>
 | 
						|
//   No NotTheCheckWeWant(...);
 | 
						|
//
 | 
						|
//   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
 | 
						|
//
 | 
						|
// The problem here is that template resolution will not match
 | 
						|
// C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
 | 
						|
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
 | 
						|
// |value| will be false.  This formulation only checks for whether or
 | 
						|
// not TargetFunc exist directly in the class being introspected.
 | 
						|
//
 | 
						|
// To get around this, we play a dirty trick with multiple inheritance.
 | 
						|
// First, We create a class BaseMixin that declares each function that we
 | 
						|
// want to probe for.  Then we create a class Base that inherits from both T
 | 
						|
// (the class we wish to probe) and BaseMixin.  Note that the function
 | 
						|
// signature in BaseMixin does not need to match the signature of the function
 | 
						|
// we are probing for; thus it's easiest to just use void(void).
 | 
						|
//
 | 
						|
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
 | 
						|
// ambiguous resolution between BaseMixin and T.  This lets us write the
 | 
						|
// following:
 | 
						|
//
 | 
						|
//   template <typename C>
 | 
						|
//   No GoodCheck(Helper<&C::TargetFunc>*);
 | 
						|
//
 | 
						|
//   template <typename C>
 | 
						|
//   Yes GoodCheck(...);
 | 
						|
//
 | 
						|
//   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
 | 
						|
//
 | 
						|
// Notice here that the variadic version of GoodCheck() returns Yes here
 | 
						|
// instead of No like the previous one. Also notice that we calculate |value|
 | 
						|
// by specializing GoodCheck() on Base instead of T.
 | 
						|
//
 | 
						|
// We've reversed the roles of the variadic, and Helper overloads.
 | 
						|
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
 | 
						|
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
 | 
						|
// to the variadic version if T has TargetFunc.  If T::TargetFunc does not
 | 
						|
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
 | 
						|
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
 | 
						|
//
 | 
						|
// This method of SFINAE will correctly probe for inherited names, but it cannot
 | 
						|
// typecheck those names.  It's still a good enough sanity check though.
 | 
						|
//
 | 
						|
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
 | 
						|
//
 | 
						|
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
 | 
						|
// this works well.
 | 
						|
//
 | 
						|
// TODO(ajwong): Make this check for Release() as well.
 | 
						|
// See http://crbug.com/82038.
 | 
						|
template <typename T>
 | 
						|
class SupportsAddRefAndRelease {
 | 
						|
  typedef char Yes[1];
 | 
						|
  typedef char No[2];
 | 
						|
 | 
						|
  struct BaseMixin {
 | 
						|
    void AddRef();
 | 
						|
  };
 | 
						|
 | 
						|
// MSVC warns when you try to use Base if T has a private destructor, the
 | 
						|
// common pattern for refcounted types. It does this even though no attempt to
 | 
						|
// instantiate Base is made.  We disable the warning for this definition.
 | 
						|
#if defined(OS_WIN)
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable : 4624)
 | 
						|
#endif
 | 
						|
  struct Base : public T, public BaseMixin {};
 | 
						|
#if defined(OS_WIN)
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
  template <void (BaseMixin::*)(void)>
 | 
						|
  struct Helper {};
 | 
						|
 | 
						|
  template <typename C>
 | 
						|
  static No& Check(Helper<&C::AddRef>*);
 | 
						|
 | 
						|
  template <typename>
 | 
						|
  static Yes& Check(...);
 | 
						|
 | 
						|
 public:
 | 
						|
  static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
 | 
						|
};
 | 
						|
 | 
						|
// Helpers to assert that arguments of a recounted type are bound with a
 | 
						|
// scoped_refptr.
 | 
						|
template <bool IsClasstype, typename T>
 | 
						|
struct UnsafeBindtoRefCountedArgHelper : false_type {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnsafeBindtoRefCountedArgHelper<true, T>
 | 
						|
    : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnsafeBindtoRefCountedArg : false_type {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnsafeBindtoRefCountedArg<T*>
 | 
						|
    : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class HasIsMethodTag {
 | 
						|
  typedef char Yes[1];
 | 
						|
  typedef char No[2];
 | 
						|
 | 
						|
  template <typename U>
 | 
						|
  static Yes& Check(typename U::IsMethod*);
 | 
						|
 | 
						|
  template <typename U>
 | 
						|
  static No& Check(...);
 | 
						|
 | 
						|
 public:
 | 
						|
  static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class UnretainedWrapper {
 | 
						|
 public:
 | 
						|
  explicit UnretainedWrapper(T* o) : ptr_(o) {}
 | 
						|
  T* get() const { return ptr_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  T* ptr_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class ConstRefWrapper {
 | 
						|
 public:
 | 
						|
  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
 | 
						|
  const T& get() const { return *ptr_; }
 | 
						|
 | 
						|
 private:
 | 
						|
  const T* ptr_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct IgnoreResultHelper {
 | 
						|
  explicit IgnoreResultHelper(T functor) : functor_(functor) {}
 | 
						|
 | 
						|
  T functor_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct IgnoreResultHelper<Callback<T>> {
 | 
						|
  explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
 | 
						|
 | 
						|
  const Callback<T>& functor_;
 | 
						|
};
 | 
						|
 | 
						|
// An alternate implementation is to avoid the destructive copy, and instead
 | 
						|
// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
 | 
						|
// a class that is essentially a scoped_ptr<>.
 | 
						|
//
 | 
						|
// The current implementation has the benefit though of leaving ParamTraits<>
 | 
						|
// fully in callback_internal.h as well as avoiding type conversions during
 | 
						|
// storage.
 | 
						|
template <typename T>
 | 
						|
class OwnedWrapper {
 | 
						|
 public:
 | 
						|
  explicit OwnedWrapper(T* o) : ptr_(o) {}
 | 
						|
  ~OwnedWrapper() { delete ptr_; }
 | 
						|
  T* get() const { return ptr_; }
 | 
						|
  OwnedWrapper(const OwnedWrapper& other) {
 | 
						|
    ptr_ = other.ptr_;
 | 
						|
    other.ptr_ = NULL;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  mutable T* ptr_;
 | 
						|
};
 | 
						|
 | 
						|
// PassedWrapper is a copyable adapter for a scoper that ignores const.
 | 
						|
//
 | 
						|
// It is needed to get around the fact that Bind() takes a const reference to
 | 
						|
// all its arguments.  Because Bind() takes a const reference to avoid
 | 
						|
// unnecessary copies, it is incompatible with movable-but-not-copyable
 | 
						|
// types; doing a destructive "move" of the type into Bind() would violate
 | 
						|
// the const correctness.
 | 
						|
//
 | 
						|
// This conundrum cannot be solved without either C++11 rvalue references or
 | 
						|
// a O(2^n) blowup of Bind() templates to handle each combination of regular
 | 
						|
// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
 | 
						|
// that is copyable to transmit the correct type information down into
 | 
						|
// BindState<>. Ignoring const in this type makes sense because it is only
 | 
						|
// created when we are explicitly trying to do a destructive move.
 | 
						|
//
 | 
						|
// Two notes:
 | 
						|
//  1) PassedWrapper supports any type that has a "Pass()" function.
 | 
						|
//     This is intentional. The whitelisting of which specific types we
 | 
						|
//     support is maintained by CallbackParamTraits<>.
 | 
						|
//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
 | 
						|
//     scoper to a Callback and allow the Callback to execute once.
 | 
						|
template <typename T>
 | 
						|
class PassedWrapper {
 | 
						|
 public:
 | 
						|
  explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
 | 
						|
  PassedWrapper(const PassedWrapper& other)
 | 
						|
      : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {}
 | 
						|
  T Pass() const {
 | 
						|
    CHECK(is_valid_);
 | 
						|
    is_valid_ = false;
 | 
						|
    return scoper_.Pass();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  mutable bool is_valid_;
 | 
						|
  mutable T scoper_;
 | 
						|
};
 | 
						|
 | 
						|
// Unwrap the stored parameters for the wrappers above.
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits {
 | 
						|
  typedef const T& ForwardType;
 | 
						|
  static ForwardType Unwrap(const T& o) { return o; }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<UnretainedWrapper<T>> {
 | 
						|
  typedef T* ForwardType;
 | 
						|
  static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
 | 
						|
    return unretained.get();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<ConstRefWrapper<T>> {
 | 
						|
  typedef const T& ForwardType;
 | 
						|
  static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
 | 
						|
    return const_ref.get();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<scoped_refptr<T>> {
 | 
						|
  typedef T* ForwardType;
 | 
						|
  static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<WeakPtr<T>> {
 | 
						|
  typedef const WeakPtr<T>& ForwardType;
 | 
						|
  static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<OwnedWrapper<T>> {
 | 
						|
  typedef T* ForwardType;
 | 
						|
  static ForwardType Unwrap(const OwnedWrapper<T>& o) { return o.get(); }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct UnwrapTraits<PassedWrapper<T>> {
 | 
						|
  typedef T ForwardType;
 | 
						|
  static T Unwrap(PassedWrapper<T>& o) { return o.Pass(); }
 | 
						|
};
 | 
						|
 | 
						|
// Utility for handling different refcounting semantics in the Bind()
 | 
						|
// function.
 | 
						|
template <bool is_method, typename T>
 | 
						|
struct MaybeRefcount;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct MaybeRefcount<false, T> {
 | 
						|
  static void AddRef(const T&) {}
 | 
						|
  static void Release(const T&) {}
 | 
						|
};
 | 
						|
 | 
						|
template <typename T, size_t n>
 | 
						|
struct MaybeRefcount<false, T[n]> {
 | 
						|
  static void AddRef(const T*) {}
 | 
						|
  static void Release(const T*) {}
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct MaybeRefcount<true, T> {
 | 
						|
  static void AddRef(const T&) {}
 | 
						|
  static void Release(const T&) {}
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct MaybeRefcount<true, T*> {
 | 
						|
  static void AddRef(T* o) { o->AddRef(); }
 | 
						|
  static void Release(T* o) { o->Release(); }
 | 
						|
};
 | 
						|
 | 
						|
// No need to additionally AddRef() and Release() since we are storing a
 | 
						|
// scoped_refptr<> inside the storage object already.
 | 
						|
template <typename T>
 | 
						|
struct MaybeRefcount<true, scoped_refptr<T>> {
 | 
						|
  static void AddRef(const scoped_refptr<T>& o) {}
 | 
						|
  static void Release(const scoped_refptr<T>& o) {}
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct MaybeRefcount<true, const T*> {
 | 
						|
  static void AddRef(const T* o) { o->AddRef(); }
 | 
						|
  static void Release(const T* o) { o->Release(); }
 | 
						|
};
 | 
						|
 | 
						|
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
 | 
						|
// method.  It is used internally by Bind() to select the correct
 | 
						|
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
 | 
						|
// the target object is invalidated.
 | 
						|
//
 | 
						|
// P1 should be the type of the object that will be received of the method.
 | 
						|
template <bool IsMethod, typename P1>
 | 
						|
struct IsWeakMethod : public false_type {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct IsWeakMethod<true, WeakPtr<T>> : public true_type {};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>> : public true_type {};
 | 
						|
 | 
						|
}  // namespace cef_internal
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::UnretainedWrapper<T> Unretained(T* o) {
 | 
						|
  return cef_internal::UnretainedWrapper<T>(o);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::ConstRefWrapper<T> ConstRef(const T& o) {
 | 
						|
  return cef_internal::ConstRefWrapper<T>(o);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::OwnedWrapper<T> Owned(T* o) {
 | 
						|
  return cef_internal::OwnedWrapper<T>(o);
 | 
						|
}
 | 
						|
 | 
						|
// We offer 2 syntaxes for calling Passed().  The first takes a temporary and
 | 
						|
// is best suited for use with the return value of a function. The second
 | 
						|
// takes a pointer to the scoper and is just syntactic sugar to avoid having
 | 
						|
// to write Passed(scoper.Pass()).
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::PassedWrapper<T> Passed(T scoper) {
 | 
						|
  return cef_internal::PassedWrapper<T>(scoper.Pass());
 | 
						|
}
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::PassedWrapper<T> Passed(T* scoper) {
 | 
						|
  return cef_internal::PassedWrapper<T>(scoper->Pass());
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::IgnoreResultHelper<T> IgnoreResult(T data) {
 | 
						|
  return cef_internal::IgnoreResultHelper<T>(data);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static inline cef_internal::IgnoreResultHelper<Callback<T>> IgnoreResult(
 | 
						|
    const Callback<T>& data) {
 | 
						|
  return cef_internal::IgnoreResultHelper<Callback<T>>(data);
 | 
						|
}
 | 
						|
 | 
						|
void DoNothing();
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void DeletePointer(T* obj) {
 | 
						|
  delete obj;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace base
 | 
						|
 | 
						|
#endif  // !USING_CHROMIUM_INCLUDES
 | 
						|
 | 
						|
#endif  // CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
 |