mirror of
https://bitbucket.org/chromiumembedded/cef
synced 2024-12-12 17:46:04 +01:00
1409 lines
52 KiB
C++
1409 lines
52 KiB
C++
// Copyright (c) 2011 Google Inc. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the name Chromium Embedded
|
|
// Framework nor the names of its contributors may be used to endorse
|
|
// or promote products derived from this software without specific prior
|
|
// written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Do not include this header file directly. Use base/cef_bind.h instead.
|
|
|
|
// See base/cef_callback.h for user documentation.
|
|
//
|
|
//
|
|
// CONCEPTS:
|
|
// Functor -- A movable type representing something that should be called.
|
|
// All function pointers and Callback<> are functors even if the
|
|
// invocation syntax differs.
|
|
// RunType -- A function type (as opposed to function _pointer_ type) for
|
|
// a Callback<>::Run(). Usually just a convenience typedef.
|
|
// (Bound)Args -- A set of types that stores the arguments.
|
|
//
|
|
// Types:
|
|
// ForceVoidReturn<> -- Helper class for translating function signatures to
|
|
// equivalent forms with a "void" return type.
|
|
// FunctorTraits<> -- Type traits used to determine the correct RunType and
|
|
// invocation manner for a Functor. This is where function
|
|
// signature adapters are applied.
|
|
// InvokeHelper<> -- Take a Functor + arguments and actully invokes it.
|
|
// Handle the differing syntaxes needed for WeakPtr<>
|
|
// support. This is separate from Invoker to avoid creating
|
|
// multiple version of Invoker<>.
|
|
// Invoker<> -- Unwraps the curried parameters and executes the Functor.
|
|
// BindState<> -- Stores the curried parameters, and is the main entry point
|
|
// into the Bind() system.
|
|
|
|
#ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_H_
|
|
#define CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "include/base/cef_build.h"
|
|
#include "include/base/cef_compiler_specific.h"
|
|
#include "include/base/cef_logging.h"
|
|
#include "include/base/cef_template_util.h"
|
|
#include "include/base/cef_weak_ptr.h"
|
|
#include "include/base/internal/cef_callback_internal.h"
|
|
#include "include/base/internal/cef_raw_scoped_refptr_mismatch_checker.h"
|
|
|
|
#if defined(OS_APPLE) && !HAS_FEATURE(objc_arc)
|
|
#include "include/base/internal/cef_scoped_block_mac.h"
|
|
#endif
|
|
|
|
#if defined(OS_WIN)
|
|
namespace Microsoft {
|
|
namespace WRL {
|
|
template <typename>
|
|
class ComPtr;
|
|
} // namespace WRL
|
|
} // namespace Microsoft
|
|
#endif
|
|
|
|
namespace base {
|
|
|
|
template <typename T>
|
|
struct IsWeakReceiver;
|
|
|
|
template <typename>
|
|
struct BindUnwrapTraits;
|
|
|
|
template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
|
|
struct CallbackCancellationTraits;
|
|
|
|
namespace internal {
|
|
|
|
template <typename Functor, typename SFINAE = void>
|
|
struct FunctorTraits;
|
|
|
|
template <typename T>
|
|
class UnretainedWrapper {
|
|
public:
|
|
explicit UnretainedWrapper(T* o) : ptr_(o) {}
|
|
T* get() const { return ptr_; }
|
|
|
|
private:
|
|
T* ptr_;
|
|
};
|
|
|
|
template <typename T>
|
|
class RetainedRefWrapper {
|
|
public:
|
|
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
|
|
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
|
|
T* get() const { return ptr_.get(); }
|
|
|
|
private:
|
|
scoped_refptr<T> ptr_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct IgnoreResultHelper {
|
|
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
|
|
explicit operator bool() const { return !!functor_; }
|
|
|
|
T functor_;
|
|
};
|
|
|
|
template <typename T, typename Deleter = std::default_delete<T>>
|
|
class OwnedWrapper {
|
|
public:
|
|
explicit OwnedWrapper(T* o) : ptr_(o) {}
|
|
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
|
|
: ptr_(std::move(ptr)) {}
|
|
T* get() const { return ptr_.get(); }
|
|
|
|
private:
|
|
std::unique_ptr<T, Deleter> ptr_;
|
|
};
|
|
|
|
template <typename T>
|
|
class OwnedRefWrapper {
|
|
public:
|
|
explicit OwnedRefWrapper(const T& t) : t_(t) {}
|
|
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
|
|
T& get() const { return t_; }
|
|
|
|
private:
|
|
mutable T t_;
|
|
};
|
|
|
|
// PassedWrapper is a copyable adapter for a scoper that ignores const.
|
|
//
|
|
// It is needed to get around the fact that Bind() takes a const reference to
|
|
// all its arguments. Because Bind() takes a const reference to avoid
|
|
// unnecessary copies, it is incompatible with movable-but-not-copyable
|
|
// types; doing a destructive "move" of the type into Bind() would violate
|
|
// the const correctness.
|
|
//
|
|
// This conundrum cannot be solved without either C++11 rvalue references or
|
|
// a O(2^n) blowup of Bind() templates to handle each combination of regular
|
|
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
|
|
// that is copyable to transmit the correct type information down into
|
|
// BindState<>. Ignoring const in this type makes sense because it is only
|
|
// created when we are explicitly trying to do a destructive move.
|
|
//
|
|
// Two notes:
|
|
// 1) PassedWrapper supports any type that has a move constructor, however
|
|
// the type will need to be specifically allowed in order for it to be
|
|
// bound to a Callback. We guard this explicitly at the call of Passed()
|
|
// to make for clear errors. Things not given to Passed() will be forwarded
|
|
// and stored by value which will not work for general move-only types.
|
|
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
|
|
// scoper to a Callback and allow the Callback to execute once.
|
|
template <typename T>
|
|
class PassedWrapper {
|
|
public:
|
|
explicit PassedWrapper(T&& scoper)
|
|
: is_valid_(true), scoper_(std::move(scoper)) {}
|
|
PassedWrapper(PassedWrapper&& other)
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
|
T Take() const {
|
|
CHECK(is_valid_);
|
|
is_valid_ = false;
|
|
return std::move(scoper_);
|
|
}
|
|
|
|
private:
|
|
mutable bool is_valid_;
|
|
mutable T scoper_;
|
|
};
|
|
|
|
template <typename T>
|
|
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
|
|
|
|
template <typename T>
|
|
decltype(auto) Unwrap(T&& o) {
|
|
return Unwrapper<T>::Unwrap(std::forward<T>(o));
|
|
}
|
|
|
|
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
|
|
// method. It is used internally by Bind() to select the correct
|
|
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
|
|
// the target object is invalidated.
|
|
//
|
|
// The first argument should be the type of the object that will be received by
|
|
// the method.
|
|
template <bool is_method, typename... Args>
|
|
struct IsWeakMethod : std::false_type {};
|
|
|
|
template <typename T, typename... Args>
|
|
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
|
|
|
|
// Packs a list of types to hold them in a single type.
|
|
template <typename... Types>
|
|
struct TypeList {};
|
|
|
|
// Used for DropTypeListItem implementation.
|
|
template <size_t n, typename List>
|
|
struct DropTypeListItemImpl;
|
|
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
|
template <size_t n, typename T, typename... List>
|
|
struct DropTypeListItemImpl<n, TypeList<T, List...>>
|
|
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
|
|
|
|
template <typename T, typename... List>
|
|
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
|
|
using Type = TypeList<T, List...>;
|
|
};
|
|
|
|
template <>
|
|
struct DropTypeListItemImpl<0, TypeList<>> {
|
|
using Type = TypeList<>;
|
|
};
|
|
|
|
// A type-level function that drops |n| list item from given TypeList.
|
|
template <size_t n, typename List>
|
|
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
|
|
|
|
// Used for TakeTypeListItem implementation.
|
|
template <size_t n, typename List, typename... Accum>
|
|
struct TakeTypeListItemImpl;
|
|
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
|
template <size_t n, typename T, typename... List, typename... Accum>
|
|
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
|
|
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
|
|
|
|
template <typename T, typename... List, typename... Accum>
|
|
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
|
|
using Type = TypeList<Accum...>;
|
|
};
|
|
|
|
template <typename... Accum>
|
|
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
|
|
using Type = TypeList<Accum...>;
|
|
};
|
|
|
|
// A type-level function that takes first |n| list item from given TypeList.
|
|
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
|
|
// TypeList<A, B, C>.
|
|
template <size_t n, typename List>
|
|
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
|
|
|
|
// Used for ConcatTypeLists implementation.
|
|
template <typename List1, typename List2>
|
|
struct ConcatTypeListsImpl;
|
|
|
|
template <typename... Types1, typename... Types2>
|
|
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
|
|
using Type = TypeList<Types1..., Types2...>;
|
|
};
|
|
|
|
// A type-level function that concats two TypeLists.
|
|
template <typename List1, typename List2>
|
|
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
|
|
|
|
// Used for MakeFunctionType implementation.
|
|
template <typename R, typename ArgList>
|
|
struct MakeFunctionTypeImpl;
|
|
|
|
template <typename R, typename... Args>
|
|
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
|
|
// MSVC 2013 doesn't support Type Alias of function types.
|
|
// Revisit this after we update it to newer version.
|
|
typedef R Type(Args...);
|
|
};
|
|
|
|
// A type-level function that constructs a function type that has |R| as its
|
|
// return type and has TypeLists items as its arguments.
|
|
template <typename R, typename ArgList>
|
|
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
|
|
|
|
// Used for ExtractArgs and ExtractReturnType.
|
|
template <typename Signature>
|
|
struct ExtractArgsImpl;
|
|
|
|
template <typename R, typename... Args>
|
|
struct ExtractArgsImpl<R(Args...)> {
|
|
using ReturnType = R;
|
|
using ArgsList = TypeList<Args...>;
|
|
};
|
|
|
|
// A type-level function that extracts function arguments into a TypeList.
|
|
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
|
|
template <typename Signature>
|
|
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
|
|
|
|
// A type-level function that extracts the return type of a function.
|
|
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
|
|
template <typename Signature>
|
|
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
|
|
|
|
template <typename Callable,
|
|
typename Signature = decltype(&Callable::operator())>
|
|
struct ExtractCallableRunTypeImpl;
|
|
|
|
template <typename Callable, typename R, typename... Args>
|
|
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
|
|
using Type = R(Args...);
|
|
};
|
|
|
|
template <typename Callable, typename R, typename... Args>
|
|
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
|
|
using Type = R(Args...);
|
|
};
|
|
|
|
// Evaluated to RunType of the given callable type.
|
|
// Example:
|
|
// auto f = [](int, char*) { return 0.1; };
|
|
// ExtractCallableRunType<decltype(f)>
|
|
// is evaluated to
|
|
// double(int, char*);
|
|
template <typename Callable>
|
|
using ExtractCallableRunType =
|
|
typename ExtractCallableRunTypeImpl<Callable>::Type;
|
|
|
|
// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
|
|
// Otherwise, it's std::false_type.
|
|
// Example:
|
|
// IsCallableObject<void(*)()>::value is false.
|
|
//
|
|
// struct Foo {};
|
|
// IsCallableObject<void(Foo::*)()>::value is false.
|
|
//
|
|
// int i = 0;
|
|
// auto f = [i]() {};
|
|
// IsCallableObject<decltype(f)>::value is false.
|
|
template <typename Functor, typename SFINAE = void>
|
|
struct IsCallableObject : std::false_type {};
|
|
|
|
template <typename Callable>
|
|
struct IsCallableObject<Callable, void_t<decltype(&Callable::operator())>>
|
|
: std::true_type {};
|
|
|
|
// HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a
|
|
// raw pointer to a RefCounted type.
|
|
template <typename... Ts>
|
|
struct HasRefCountedTypeAsRawPtr
|
|
: disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {};
|
|
|
|
// ForceVoidReturn<>
|
|
//
|
|
// Set of templates that support forcing the function return type to void.
|
|
template <typename Sig>
|
|
struct ForceVoidReturn;
|
|
|
|
template <typename R, typename... Args>
|
|
struct ForceVoidReturn<R(Args...)> {
|
|
using RunType = void(Args...);
|
|
};
|
|
|
|
// FunctorTraits<>
|
|
//
|
|
// See description at top of file.
|
|
template <typename Functor, typename SFINAE>
|
|
struct FunctorTraits;
|
|
|
|
// For empty callable types.
|
|
// This specialization is intended to allow binding captureless lambdas, based
|
|
// on the fact that captureless lambdas are empty while capturing lambdas are
|
|
// not. This also allows any functors as far as it's an empty class.
|
|
// Example:
|
|
//
|
|
// // Captureless lambdas are allowed.
|
|
// []() {return 42;};
|
|
//
|
|
// // Capturing lambdas are *not* allowed.
|
|
// int x;
|
|
// [x]() {return x;};
|
|
//
|
|
// // Any empty class with operator() is allowed.
|
|
// struct Foo {
|
|
// void operator()() const {}
|
|
// // No non-static member variable and no virtual functions.
|
|
// };
|
|
template <typename Functor>
|
|
struct FunctorTraits<Functor,
|
|
std::enable_if_t<IsCallableObject<Functor>::value &&
|
|
std::is_empty<Functor>::value>> {
|
|
using RunType = ExtractCallableRunType<Functor>;
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = false;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename RunFunctor, typename... RunArgs>
|
|
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
|
|
RunArgs&&... args) {
|
|
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For functions.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<R (*)(Args...)> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename Function, typename... RunArgs>
|
|
static R Invoke(Function&& function, RunArgs&&... args) {
|
|
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#if defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
|
|
|
|
// For functions.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<R(__stdcall*)(Args...)> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename... RunArgs>
|
|
static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
|
|
return function(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For functions.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<R(__fastcall*)(Args...)> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename... RunArgs>
|
|
static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
|
|
return function(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#endif // defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
|
|
|
|
#if defined(OS_APPLE)
|
|
|
|
// Support for Objective-C blocks. There are two implementation depending
|
|
// on whether Automated Reference Counting (ARC) is enabled. When ARC is
|
|
// enabled, then the block itself can be bound as the compiler will ensure
|
|
// its lifetime will be correctly managed. Otherwise, require the block to
|
|
// be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will
|
|
// correctly manage the block lifetime.
|
|
//
|
|
// The two implementation ensure that the One Definition Rule (ODR) is not
|
|
// broken (it is not possible to write a template base::RetainBlock that would
|
|
// work correctly both with ARC enabled and disabled).
|
|
|
|
#if HAS_FEATURE(objc_arc)
|
|
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<R (^)(Args...)> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename BlockType, typename... RunArgs>
|
|
static R Invoke(BlockType&& block, RunArgs&&... args) {
|
|
// According to LLVM documentation (6.3), "local variables of automatic
|
|
// storage duration do not have precise lifetime." Use objc_precise_lifetime
|
|
// to ensure that the Objective-C block is not deallocated until it has
|
|
// finished executing even if the Callback<> is destroyed during the block
|
|
// execution.
|
|
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
|
|
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
|
|
return scoped_block(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#else // HAS_FEATURE(objc_arc)
|
|
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename BlockType, typename... RunArgs>
|
|
static R Invoke(BlockType&& block, RunArgs&&... args) {
|
|
// Copy the block to ensure that the Objective-C block is not deallocated
|
|
// until it has finished executing even if the Callback<> is destroyed
|
|
// during the block execution.
|
|
base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block);
|
|
return scoped_block.get()(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#endif // HAS_FEATURE(objc_arc)
|
|
#endif // defined(OS_APPLE)
|
|
|
|
// For methods.
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (Receiver::*)(Args...)> {
|
|
using RunType = R(Receiver*, Args...);
|
|
static constexpr bool is_method = true;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
|
static R Invoke(Method method,
|
|
ReceiverPtr&& receiver_ptr,
|
|
RunArgs&&... args) {
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For const methods.
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (Receiver::*)(Args...) const> {
|
|
using RunType = R(const Receiver*, Args...);
|
|
static constexpr bool is_method = true;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
|
static R Invoke(Method method,
|
|
ReceiverPtr&& receiver_ptr,
|
|
RunArgs&&... args) {
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#if defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
|
|
|
|
// For __stdcall methods.
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (__stdcall Receiver::*)(Args...)> {
|
|
using RunType = R(Receiver*, Args...);
|
|
static constexpr bool is_method = true;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
|
static R Invoke(Method method,
|
|
ReceiverPtr&& receiver_ptr,
|
|
RunArgs&&... args) {
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For __stdcall const methods.
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const> {
|
|
using RunType = R(const Receiver*, Args...);
|
|
static constexpr bool is_method = true;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = false;
|
|
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
|
static R Invoke(Method method,
|
|
ReceiverPtr&& receiver_ptr,
|
|
RunArgs&&... args) {
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
#endif // defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
|
|
|
|
#ifdef __cpp_noexcept_function_type
|
|
// noexcept makes a distinct function type in C++17.
|
|
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
|
|
// different in C++17.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
|
|
};
|
|
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
|
|
: FunctorTraits<R (Receiver::*)(Args...)> {};
|
|
|
|
template <typename R, typename Receiver, typename... Args>
|
|
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
|
|
: FunctorTraits<R (Receiver::*)(Args...) const> {};
|
|
#endif
|
|
|
|
// For IgnoreResults.
|
|
template <typename T>
|
|
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
|
|
using RunType =
|
|
typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;
|
|
|
|
template <typename IgnoreResultType, typename... RunArgs>
|
|
static void Invoke(IgnoreResultType&& ignore_result_helper,
|
|
RunArgs&&... args) {
|
|
FunctorTraits<T>::Invoke(
|
|
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
|
|
std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For OnceCallbacks.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<OnceCallback<R(Args...)>> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = true;
|
|
|
|
template <typename CallbackType, typename... RunArgs>
|
|
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
|
|
DCHECK(!callback.is_null());
|
|
return std::forward<CallbackType>(callback).Run(
|
|
std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// For RepeatingCallbacks.
|
|
template <typename R, typename... Args>
|
|
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
|
|
using RunType = R(Args...);
|
|
static constexpr bool is_method = false;
|
|
static constexpr bool is_nullable = true;
|
|
static constexpr bool is_callback = true;
|
|
|
|
template <typename CallbackType, typename... RunArgs>
|
|
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
|
|
DCHECK(!callback.is_null());
|
|
return std::forward<CallbackType>(callback).Run(
|
|
std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
template <typename Functor>
|
|
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;
|
|
|
|
// InvokeHelper<>
|
|
//
|
|
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
|
|
//
|
|
// The normal type just calls the underlying runnable.
|
|
//
|
|
// WeakCalls need special syntax that is applied to the first argument to check
|
|
// if they should no-op themselves.
|
|
template <bool is_weak_call, typename ReturnType>
|
|
struct InvokeHelper;
|
|
|
|
template <typename ReturnType>
|
|
struct InvokeHelper<false, ReturnType> {
|
|
template <typename Functor, typename... RunArgs>
|
|
static inline ReturnType MakeItSo(Functor&& functor, RunArgs&&... args) {
|
|
using Traits = MakeFunctorTraits<Functor>;
|
|
return Traits::Invoke(std::forward<Functor>(functor),
|
|
std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
template <typename ReturnType>
|
|
struct InvokeHelper<true, ReturnType> {
|
|
// WeakCalls are only supported for functions with a void return type.
|
|
// Otherwise, the function result would be undefined if the WeakPtr<>
|
|
// is invalidated.
|
|
static_assert(std::is_void<ReturnType>::value,
|
|
"weak_ptrs can only bind to methods without return values");
|
|
|
|
template <typename Functor, typename BoundWeakPtr, typename... RunArgs>
|
|
static inline void MakeItSo(Functor&& functor,
|
|
BoundWeakPtr&& weak_ptr,
|
|
RunArgs&&... args) {
|
|
if (!weak_ptr)
|
|
return;
|
|
using Traits = MakeFunctorTraits<Functor>;
|
|
Traits::Invoke(std::forward<Functor>(functor),
|
|
std::forward<BoundWeakPtr>(weak_ptr),
|
|
std::forward<RunArgs>(args)...);
|
|
}
|
|
};
|
|
|
|
// Invoker<>
|
|
//
|
|
// See description at the top of the file.
|
|
template <typename StorageType, typename UnboundRunType>
|
|
struct Invoker;
|
|
|
|
template <typename StorageType, typename R, typename... UnboundArgs>
|
|
struct Invoker<StorageType, R(UnboundArgs...)> {
|
|
static R RunOnce(BindStateBase* base,
|
|
PassingType<UnboundArgs>... unbound_args) {
|
|
// Local references to make debugger stepping easier. If in a debugger,
|
|
// you really want to warp ahead and step through the
|
|
// InvokeHelper<>::MakeItSo() call below.
|
|
StorageType* storage = static_cast<StorageType*>(base);
|
|
static constexpr size_t num_bound_args =
|
|
std::tuple_size<decltype(storage->bound_args_)>::value;
|
|
return RunImpl(std::move(storage->functor_),
|
|
std::move(storage->bound_args_),
|
|
std::make_index_sequence<num_bound_args>(),
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
|
}
|
|
|
|
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
|
|
// Local references to make debugger stepping easier. If in a debugger,
|
|
// you really want to warp ahead and step through the
|
|
// InvokeHelper<>::MakeItSo() call below.
|
|
const StorageType* storage = static_cast<StorageType*>(base);
|
|
static constexpr size_t num_bound_args =
|
|
std::tuple_size<decltype(storage->bound_args_)>::value;
|
|
return RunImpl(storage->functor_, storage->bound_args_,
|
|
std::make_index_sequence<num_bound_args>(),
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
|
}
|
|
|
|
private:
|
|
template <typename Functor, typename BoundArgsTuple, size_t... indices>
|
|
static inline R RunImpl(Functor&& functor,
|
|
BoundArgsTuple&& bound,
|
|
std::index_sequence<indices...>,
|
|
UnboundArgs&&... unbound_args) {
|
|
static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;
|
|
|
|
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
|
|
static constexpr bool is_weak_call =
|
|
IsWeakMethod<is_method,
|
|
std::tuple_element_t<indices, DecayedArgsTuple>...>();
|
|
|
|
return InvokeHelper<is_weak_call, R>::MakeItSo(
|
|
std::forward<Functor>(functor),
|
|
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
|
}
|
|
};
|
|
|
|
// Extracts necessary type info from Functor and BoundArgs.
|
|
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
|
|
template <typename Functor, typename... BoundArgs>
|
|
struct BindTypeHelper {
|
|
static constexpr size_t num_bounds = sizeof...(BoundArgs);
|
|
using FunctorTraits = MakeFunctorTraits<Functor>;
|
|
|
|
// Example:
|
|
// When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
|
|
// is a template pack of `Foo*` and `int16_t`:
|
|
// - RunType is `double(Foo*, int, const std::string&)`,
|
|
// - ReturnType is `double`,
|
|
// - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
|
|
// - BoundParamsList is `TypeList<Foo*, int>`,
|
|
// - UnboundParamsList is `TypeList<const std::string&>`,
|
|
// - BoundArgsList is `TypeList<Foo*, int16_t>`,
|
|
// - UnboundRunType is `double(const std::string&)`.
|
|
using RunType = typename FunctorTraits::RunType;
|
|
using ReturnType = ExtractReturnType<RunType>;
|
|
|
|
using RunParamsList = ExtractArgs<RunType>;
|
|
using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
|
|
using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;
|
|
|
|
using BoundArgsList = TypeList<BoundArgs...>;
|
|
|
|
using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
|
|
};
|
|
|
|
template <typename Functor>
|
|
std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull(
|
|
const Functor& functor) {
|
|
return !functor;
|
|
}
|
|
|
|
template <typename Functor>
|
|
std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull(
|
|
const Functor&) {
|
|
return false;
|
|
}
|
|
|
|
// Used by QueryCancellationTraits below.
|
|
template <typename Functor, typename BoundArgsTuple, size_t... indices>
|
|
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
|
|
const Functor& functor,
|
|
const BoundArgsTuple& bound_args,
|
|
std::index_sequence<indices...>) {
|
|
switch (mode) {
|
|
case BindStateBase::IS_CANCELLED:
|
|
return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
|
|
functor, std::get<indices>(bound_args)...);
|
|
case BindStateBase::MAYBE_VALID:
|
|
return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
|
|
functor, std::get<indices>(bound_args)...);
|
|
}
|
|
NOTREACHED();
|
|
return false;
|
|
}
|
|
|
|
// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
|
|
// true if the callback |base| represents is canceled.
|
|
template <typename BindStateType>
|
|
bool QueryCancellationTraits(const BindStateBase* base,
|
|
BindStateBase::CancellationQueryMode mode) {
|
|
const BindStateType* storage = static_cast<const BindStateType*>(base);
|
|
static constexpr size_t num_bound_args =
|
|
std::tuple_size<decltype(storage->bound_args_)>::value;
|
|
return QueryCancellationTraitsImpl(
|
|
mode, storage->functor_, storage->bound_args_,
|
|
std::make_index_sequence<num_bound_args>());
|
|
}
|
|
|
|
// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
|
|
template <typename Functor, typename Receiver, typename... Unused>
|
|
std::enable_if_t<
|
|
!(MakeFunctorTraits<Functor>::is_method &&
|
|
std::is_pointer<std::decay_t<Receiver>>::value &&
|
|
IsRefCountedType<std::remove_pointer_t<std::decay_t<Receiver>>>::value)>
|
|
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {}
|
|
|
|
template <typename Functor>
|
|
void BanUnconstructedRefCountedReceiver() {}
|
|
|
|
// Asserts that Callback is not the first owner of a ref-counted receiver.
|
|
template <typename Functor, typename Receiver, typename... Unused>
|
|
std::enable_if_t<
|
|
MakeFunctorTraits<Functor>::is_method &&
|
|
std::is_pointer<std::decay_t<Receiver>>::value &&
|
|
IsRefCountedType<std::remove_pointer_t<std::decay_t<Receiver>>>::value>
|
|
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {
|
|
DCHECK(receiver);
|
|
|
|
// It's error prone to make the implicit first reference to ref-counted types.
|
|
// In the example below, base::BindOnce() makes the implicit first reference
|
|
// to the ref-counted Foo. If PostTask() failed or the posted task ran fast
|
|
// enough, the newly created instance can be destroyed before |oo| makes
|
|
// another reference.
|
|
// Foo::Foo() {
|
|
// base::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
|
|
// }
|
|
//
|
|
// scoped_refptr<Foo> oo = new Foo();
|
|
//
|
|
// Instead of doing like above, please consider adding a static constructor,
|
|
// and keep the first reference alive explicitly.
|
|
// // static
|
|
// scoped_refptr<Foo> Foo::Create() {
|
|
// auto foo = base::WrapRefCounted(new Foo());
|
|
// base::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
|
|
// return foo;
|
|
// }
|
|
//
|
|
// Foo::Foo() {}
|
|
//
|
|
// scoped_refptr<Foo> oo = Foo::Create();
|
|
DCHECK(receiver->HasAtLeastOneRef())
|
|
<< "base::Bind{Once,Repeating}() refuses to create the first reference "
|
|
"to ref-counted objects. That typically happens around PostTask() in "
|
|
"their constructor, and such objects can be destroyed before `new` "
|
|
"returns if the task resolves fast enough.";
|
|
}
|
|
|
|
// BindState<>
|
|
//
|
|
// This stores all the state passed into Bind().
|
|
template <typename Functor, typename... BoundArgs>
|
|
struct BindState final : BindStateBase {
|
|
using IsCancellable = bool_constant<
|
|
CallbackCancellationTraits<Functor,
|
|
std::tuple<BoundArgs...>>::is_cancellable>;
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
|
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
|
|
ForwardFunctor&& functor,
|
|
ForwardBoundArgs&&... bound_args) {
|
|
// Ban ref counted receivers that were not yet fully constructed to avoid
|
|
// a common pattern of racy situation.
|
|
BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);
|
|
|
|
// IsCancellable is std::false_type if
|
|
// CallbackCancellationTraits<>::IsCancelled returns always false.
|
|
// Otherwise, it's std::true_type.
|
|
return new BindState(IsCancellable{}, invoke_func,
|
|
std::forward<ForwardFunctor>(functor),
|
|
std::forward<ForwardBoundArgs>(bound_args)...);
|
|
}
|
|
|
|
Functor functor_;
|
|
std::tuple<BoundArgs...> bound_args_;
|
|
|
|
private:
|
|
static constexpr bool is_nested_callback =
|
|
MakeFunctorTraits<Functor>::is_callback;
|
|
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
|
explicit BindState(std::true_type,
|
|
BindStateBase::InvokeFuncStorage invoke_func,
|
|
ForwardFunctor&& functor,
|
|
ForwardBoundArgs&&... bound_args)
|
|
: BindStateBase(invoke_func,
|
|
&Destroy,
|
|
&QueryCancellationTraits<BindState>),
|
|
functor_(std::forward<ForwardFunctor>(functor)),
|
|
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
|
|
// We check the validity of nested callbacks (e.g., Bind(callback, ...)) in
|
|
// release builds to avoid null pointers from ending up in posted tasks,
|
|
// causing hard-to-diagnose crashes. Ideally we'd do this for all functors
|
|
// here, but that would have a large binary size impact.
|
|
if (is_nested_callback) {
|
|
CHECK(!IsNull(functor_));
|
|
} else {
|
|
DCHECK(!IsNull(functor_));
|
|
}
|
|
}
|
|
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
|
explicit BindState(std::false_type,
|
|
BindStateBase::InvokeFuncStorage invoke_func,
|
|
ForwardFunctor&& functor,
|
|
ForwardBoundArgs&&... bound_args)
|
|
: BindStateBase(invoke_func, &Destroy),
|
|
functor_(std::forward<ForwardFunctor>(functor)),
|
|
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
|
|
// See above for CHECK/DCHECK rationale.
|
|
if (is_nested_callback) {
|
|
CHECK(!IsNull(functor_));
|
|
} else {
|
|
DCHECK(!IsNull(functor_));
|
|
}
|
|
}
|
|
|
|
~BindState() = default;
|
|
|
|
static void Destroy(const BindStateBase* self) {
|
|
delete static_cast<const BindState*>(self);
|
|
}
|
|
};
|
|
|
|
// Used to implement MakeBindStateType.
|
|
template <bool is_method, typename Functor, typename... BoundArgs>
|
|
struct MakeBindStateTypeImpl;
|
|
|
|
template <typename Functor, typename... BoundArgs>
|
|
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
|
|
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
|
|
"A parameter is a refcounted type and needs scoped_refptr.");
|
|
using Type = BindState<std::decay_t<Functor>, std::decay_t<BoundArgs>...>;
|
|
};
|
|
|
|
template <typename Functor>
|
|
struct MakeBindStateTypeImpl<true, Functor> {
|
|
using Type = BindState<std::decay_t<Functor>>;
|
|
};
|
|
|
|
template <typename Functor, typename Receiver, typename... BoundArgs>
|
|
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
|
|
private:
|
|
using DecayedReceiver = std::decay_t<Receiver>;
|
|
|
|
static_assert(!std::is_array<std::remove_reference_t<Receiver>>::value,
|
|
"First bound argument to a method cannot be an array.");
|
|
static_assert(
|
|
!std::is_pointer<DecayedReceiver>::value ||
|
|
IsRefCountedType<std::remove_pointer_t<DecayedReceiver>>::value,
|
|
"Receivers may not be raw pointers. If using a raw pointer here is safe"
|
|
" and has no lifetime concerns, use base::Unretained() and document why"
|
|
" it's safe.");
|
|
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
|
|
"A parameter is a refcounted type and needs scoped_refptr.");
|
|
|
|
public:
|
|
using Type = BindState<
|
|
std::decay_t<Functor>,
|
|
std::conditional_t<std::is_pointer<DecayedReceiver>::value,
|
|
scoped_refptr<std::remove_pointer_t<DecayedReceiver>>,
|
|
DecayedReceiver>,
|
|
std::decay_t<BoundArgs>...>;
|
|
};
|
|
|
|
template <typename Functor, typename... BoundArgs>
|
|
using MakeBindStateType =
|
|
typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
|
|
Functor,
|
|
BoundArgs...>::Type;
|
|
|
|
// Returns a RunType of bound functor.
|
|
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
|
|
template <typename Functor, typename... BoundArgs>
|
|
using MakeUnboundRunType =
|
|
typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;
|
|
|
|
// The implementation of TransformToUnwrappedType below.
|
|
template <bool is_once, typename T>
|
|
struct TransformToUnwrappedTypeImpl;
|
|
|
|
template <typename T>
|
|
struct TransformToUnwrappedTypeImpl<true, T> {
|
|
using StoredType = std::decay_t<T>;
|
|
using ForwardType = StoredType&&;
|
|
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
|
|
};
|
|
|
|
template <typename T>
|
|
struct TransformToUnwrappedTypeImpl<false, T> {
|
|
using StoredType = std::decay_t<T>;
|
|
using ForwardType = const StoredType&;
|
|
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
|
|
};
|
|
|
|
// Transform |T| into `Unwrapped` type, which is passed to the target function.
|
|
// Example:
|
|
// In is_once == true case,
|
|
// `int&&` -> `int&&`,
|
|
// `const int&` -> `int&&`,
|
|
// `OwnedWrapper<int>&` -> `int*&&`.
|
|
// In is_once == false case,
|
|
// `int&&` -> `const int&`,
|
|
// `const int&` -> `const int&`,
|
|
// `OwnedWrapper<int>&` -> `int* const &`.
|
|
template <bool is_once, typename T>
|
|
using TransformToUnwrappedType =
|
|
typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped;
|
|
|
|
// Transforms |Args| into `Unwrapped` types, and packs them into a TypeList.
|
|
// If |is_method| is true, tries to dereference the first argument to support
|
|
// smart pointers.
|
|
template <bool is_once, bool is_method, typename... Args>
|
|
struct MakeUnwrappedTypeListImpl {
|
|
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
|
|
};
|
|
|
|
// Performs special handling for this pointers.
|
|
// Example:
|
|
// int* -> int*,
|
|
// std::unique_ptr<int> -> int*.
|
|
template <bool is_once, typename Receiver, typename... Args>
|
|
struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> {
|
|
using UnwrappedReceiver = TransformToUnwrappedType<is_once, Receiver>;
|
|
using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()),
|
|
TransformToUnwrappedType<is_once, Args>...>;
|
|
};
|
|
|
|
template <bool is_once, bool is_method, typename... Args>
|
|
using MakeUnwrappedTypeList =
|
|
typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type;
|
|
|
|
// IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback.
|
|
template <typename T>
|
|
struct IsOnceCallback : std::false_type {};
|
|
|
|
template <typename Signature>
|
|
struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {};
|
|
|
|
// Helpers to make error messages slightly more readable.
|
|
template <int i>
|
|
struct BindArgument {
|
|
template <typename ForwardingType>
|
|
struct ForwardedAs {
|
|
template <typename FunctorParamType>
|
|
struct ToParamWithType {
|
|
static constexpr bool kCanBeForwardedToBoundFunctor =
|
|
std::is_constructible<FunctorParamType, ForwardingType>::value;
|
|
|
|
// If the bound type can't be forwarded then test if `FunctorParamType` is
|
|
// a non-const lvalue reference and a reference to the unwrapped type
|
|
// *could* have been successfully forwarded.
|
|
static constexpr bool kNonConstRefParamMustBeWrapped =
|
|
kCanBeForwardedToBoundFunctor ||
|
|
!(std::is_lvalue_reference<FunctorParamType>::value &&
|
|
!std::is_const<std::remove_reference_t<FunctorParamType>>::value &&
|
|
std::is_convertible<std::decay_t<ForwardingType>&,
|
|
FunctorParamType>::value);
|
|
|
|
// Note that this intentionally drops the const qualifier from
|
|
// `ForwardingType`, to test if it *could* have been successfully
|
|
// forwarded if `Passed()` had been used.
|
|
static constexpr bool kMoveOnlyTypeMustUseBasePassed =
|
|
kCanBeForwardedToBoundFunctor ||
|
|
!std::is_constructible<FunctorParamType,
|
|
std::decay_t<ForwardingType>&&>::value;
|
|
};
|
|
};
|
|
|
|
template <typename BoundAsType>
|
|
struct BoundAs {
|
|
template <typename StorageType>
|
|
struct StoredAs {
|
|
static constexpr bool kBindArgumentCanBeCaptured =
|
|
std::is_constructible<StorageType, BoundAsType>::value;
|
|
// Note that this intentionally drops the const qualifier from
|
|
// `BoundAsType`, to test if it *could* have been successfully bound if
|
|
// `std::move()` had been used.
|
|
static constexpr bool kMoveOnlyTypeMustUseStdMove =
|
|
kBindArgumentCanBeCaptured ||
|
|
!std::is_constructible<StorageType,
|
|
std::decay_t<BoundAsType>&&>::value;
|
|
};
|
|
};
|
|
};
|
|
|
|
// Helper to assert that parameter |i| of type |Arg| can be bound, which means:
|
|
// - |Arg| can be retained internally as |Storage|.
|
|
// - |Arg| can be forwarded as |Unwrapped| to |Param|.
|
|
template <int i,
|
|
typename Arg,
|
|
typename Storage,
|
|
typename Unwrapped,
|
|
typename Param>
|
|
struct AssertConstructible {
|
|
private:
|
|
// With `BindRepeating`, there are two decision points for how to handle a
|
|
// move-only type:
|
|
//
|
|
// 1. Whether the move-only argument should be moved into the internal
|
|
// `BindState`. Either `std::move()` or `Passed` is sufficient to trigger
|
|
// move-only semantics.
|
|
// 2. Whether or not the bound, move-only argument should be moved to the
|
|
// bound functor when invoked. When the argument is bound with `Passed`,
|
|
// invoking the callback will destructively move the bound, move-only
|
|
// argument to the bound functor. In contrast, if the argument is bound
|
|
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
|
|
// functor with a constant reference to the bound, move-only argument. This
|
|
// will fail if the bound functor accepts that argument by value, since the
|
|
// argument cannot be copied. It is this latter case that this
|
|
// static_assert aims to catch.
|
|
//
|
|
// In contrast, `BindOnce()` only has one decision point. Once a move-only
|
|
// type is captured by value into the internal `BindState`, the bound,
|
|
// move-only argument will always be moved to the functor when invoked.
|
|
// Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove`
|
|
// assert below instead.
|
|
//
|
|
// Note: `Passed()` is a legacy of supporting move-only types when repeating
|
|
// callbacks were the only callback type. A `RepeatingCallback` with a
|
|
// `Passed()` argument is really a `OnceCallback` and should eventually be
|
|
// migrated.
|
|
static_assert(
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
|
template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed,
|
|
"base::BindRepeating() argument is a move-only type. Use base::Passed() "
|
|
"instead of std::move() to transfer ownership from the callback to the "
|
|
"bound functor.");
|
|
static_assert(
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
|
template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped,
|
|
"Bound argument for non-const reference parameter must be wrapped in "
|
|
"std::ref() or base::OwnedRef().");
|
|
static_assert(
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
|
template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor,
|
|
"Type mismatch between bound argument and bound functor's parameter.");
|
|
|
|
static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs<
|
|
Storage>::kMoveOnlyTypeMustUseStdMove,
|
|
"Attempting to bind a move-only type. Use std::move() to "
|
|
"transfer ownership to the created callback.");
|
|
// In practice, this static_assert should be quite rare as the storage type
|
|
// is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`.
|
|
static_assert(
|
|
BindArgument<i>::template BoundAs<Arg>::template StoredAs<
|
|
Storage>::kBindArgumentCanBeCaptured,
|
|
"Cannot capture argument: is the argument copyable or movable?");
|
|
};
|
|
|
|
// Takes three same-length TypeLists, and applies AssertConstructible for each
|
|
// triples.
|
|
template <typename Index,
|
|
typename Args,
|
|
typename UnwrappedTypeList,
|
|
typename ParamsList>
|
|
struct AssertBindArgsValidity;
|
|
|
|
template <size_t... Ns,
|
|
typename... Args,
|
|
typename... Unwrapped,
|
|
typename... Params>
|
|
struct AssertBindArgsValidity<std::index_sequence<Ns...>,
|
|
TypeList<Args...>,
|
|
TypeList<Unwrapped...>,
|
|
TypeList<Params...>>
|
|
: AssertConstructible<static_cast<int>(Ns),
|
|
Args,
|
|
std::decay_t<Args>,
|
|
Unwrapped,
|
|
Params>... {
|
|
static constexpr bool ok = true;
|
|
};
|
|
|
|
template <typename T>
|
|
struct AssertBindArgIsNotBasePassed : public std::true_type {};
|
|
|
|
template <typename T>
|
|
struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type {
|
|
};
|
|
|
|
// Used below in BindImpl to determine whether to use Invoker::Run or
|
|
// Invoker::RunOnce.
|
|
// Note: Simply using `kIsOnce ? &Invoker::RunOnce : &Invoker::Run` does not
|
|
// work, since the compiler needs to check whether both expressions are
|
|
// well-formed. Using `Invoker::Run` with a OnceCallback triggers a
|
|
// static_assert, which is why the ternary expression does not compile.
|
|
// TODO(crbug.com/752720): Remove this indirection once we have `if constexpr`.
|
|
template <typename Invoker>
|
|
constexpr auto GetInvokeFunc(std::true_type) {
|
|
return Invoker::RunOnce;
|
|
}
|
|
|
|
template <typename Invoker>
|
|
constexpr auto GetInvokeFunc(std::false_type) {
|
|
return Invoker::Run;
|
|
}
|
|
|
|
template <template <typename> class CallbackT,
|
|
typename Functor,
|
|
typename... Args>
|
|
decltype(auto) BindImpl(Functor&& functor, Args&&... args) {
|
|
// This block checks if each |args| matches to the corresponding params of the
|
|
// target function. This check does not affect the behavior of Bind, but its
|
|
// error message should be more readable.
|
|
static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value;
|
|
using Helper = BindTypeHelper<Functor, Args...>;
|
|
using FunctorTraits = typename Helper::FunctorTraits;
|
|
using BoundArgsList = typename Helper::BoundArgsList;
|
|
using UnwrappedArgsList =
|
|
MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>;
|
|
using BoundParamsList = typename Helper::BoundParamsList;
|
|
static_assert(
|
|
AssertBindArgsValidity<std::make_index_sequence<Helper::num_bounds>,
|
|
BoundArgsList, UnwrappedArgsList,
|
|
BoundParamsList>::ok,
|
|
"The bound args need to be convertible to the target params.");
|
|
|
|
using BindState = MakeBindStateType<Functor, Args...>;
|
|
using UnboundRunType = MakeUnboundRunType<Functor, Args...>;
|
|
using Invoker = Invoker<BindState, UnboundRunType>;
|
|
using CallbackType = CallbackT<UnboundRunType>;
|
|
|
|
// Store the invoke func into PolymorphicInvoke before casting it to
|
|
// InvokeFuncStorage, so that we can ensure its type matches to
|
|
// PolymorphicInvoke, to which CallbackType will cast back.
|
|
using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke;
|
|
PolymorphicInvoke invoke_func =
|
|
GetInvokeFunc<Invoker>(bool_constant<kIsOnce>());
|
|
|
|
using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
|
|
return CallbackType(BindState::Create(
|
|
reinterpret_cast<InvokeFuncStorage>(invoke_func),
|
|
std::forward<Functor>(functor), std::forward<Args>(args)...));
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
// An injection point to control |this| pointer behavior on a method invocation.
|
|
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
|
|
// method, base::Bind cancels the method invocation if the receiver is tested as
|
|
// false.
|
|
// E.g. Foo::bar() is not called:
|
|
// struct Foo : base::SupportsWeakPtr<Foo> {
|
|
// void bar() {}
|
|
// };
|
|
//
|
|
// WeakPtr<Foo> oo = nullptr;
|
|
// base::BindOnce(&Foo::bar, oo).Run();
|
|
template <typename T>
|
|
struct IsWeakReceiver : std::false_type {};
|
|
|
|
template <typename T>
|
|
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
|
|
|
|
template <typename T>
|
|
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
|
|
|
|
// An injection point to control how objects are checked for maybe validity,
|
|
// which is an optimistic thread-safe check for full validity.
|
|
template <typename>
|
|
struct MaybeValidTraits {
|
|
template <typename T>
|
|
static bool MaybeValid(const T& o) {
|
|
return o.MaybeValid();
|
|
}
|
|
};
|
|
|
|
// An injection point to control how bound objects passed to the target
|
|
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
|
|
// before the target function is invoked.
|
|
template <typename>
|
|
struct BindUnwrapTraits {
|
|
template <typename T>
|
|
static T&& Unwrap(T&& o) {
|
|
return std::forward<T>(o);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct BindUnwrapTraits<internal::UnretainedWrapper<T>> {
|
|
static T* Unwrap(const internal::UnretainedWrapper<T>& o) { return o.get(); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
|
|
static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
|
|
};
|
|
|
|
template <typename T, typename Deleter>
|
|
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
|
|
static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
|
|
return o.get();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> {
|
|
static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
|
|
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
|
|
};
|
|
|
|
#if defined(OS_WIN)
|
|
template <typename T>
|
|
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
|
|
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
|
|
};
|
|
#endif
|
|
|
|
// CallbackCancellationTraits allows customization of Callback's cancellation
|
|
// semantics. By default, callbacks are not cancellable. A specialization should
|
|
// set is_cancellable = true and implement an IsCancelled() that returns if the
|
|
// callback should be cancelled.
|
|
template <typename Functor, typename BoundArgsTuple, typename SFINAE>
|
|
struct CallbackCancellationTraits {
|
|
static constexpr bool is_cancellable = false;
|
|
};
|
|
|
|
// Specialization for method bound to weak pointer receiver.
|
|
template <typename Functor, typename... BoundArgs>
|
|
struct CallbackCancellationTraits<
|
|
Functor,
|
|
std::tuple<BoundArgs...>,
|
|
std::enable_if_t<
|
|
internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
|
|
BoundArgs...>::value>> {
|
|
static constexpr bool is_cancellable = true;
|
|
|
|
template <typename Receiver, typename... Args>
|
|
static bool IsCancelled(const Functor&,
|
|
const Receiver& receiver,
|
|
const Args&...) {
|
|
return !receiver;
|
|
}
|
|
|
|
template <typename Receiver, typename... Args>
|
|
static bool MaybeValid(const Functor&,
|
|
const Receiver& receiver,
|
|
const Args&...) {
|
|
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
|
|
}
|
|
};
|
|
|
|
// Specialization for a nested bind.
|
|
template <typename Signature, typename... BoundArgs>
|
|
struct CallbackCancellationTraits<OnceCallback<Signature>,
|
|
std::tuple<BoundArgs...>> {
|
|
static constexpr bool is_cancellable = true;
|
|
|
|
template <typename Functor>
|
|
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
|
|
return functor.IsCancelled();
|
|
}
|
|
|
|
template <typename Functor>
|
|
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
|
|
return MaybeValidTraits<Functor>::MaybeValid(functor);
|
|
}
|
|
};
|
|
|
|
template <typename Signature, typename... BoundArgs>
|
|
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
|
|
std::tuple<BoundArgs...>> {
|
|
static constexpr bool is_cancellable = true;
|
|
|
|
template <typename Functor>
|
|
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
|
|
return functor.IsCancelled();
|
|
}
|
|
|
|
template <typename Functor>
|
|
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
|
|
return MaybeValidTraits<Functor>::MaybeValid(functor);
|
|
}
|
|
};
|
|
|
|
} // namespace base
|
|
|
|
#endif // CEF_INCLUDE_BASE_INTERNAL_CEF_BIND_INTERNAL_H_
|