// Copyright (c) 2012 The Chromium Embedded Framework Authors. All rights // reserved. Use of this source code is governed by a BSD-style license that can // be found in the LICENSE file. #include "cef/libcef/browser/context.h" #include #include "base/files/file_util.h" #include "base/functional/bind.h" #include "base/run_loop.h" #include "base/task/current_thread.h" #include "base/threading/thread_restrictions.h" #include "cef/libcef/browser/browser_info_manager.h" #include "cef/libcef/browser/request_context_impl.h" #include "cef/libcef/browser/thread_util.h" #include "cef/libcef/browser/trace_subscriber.h" #include "cef/libcef/common/cef_switches.h" #include "components/network_session_configurator/common/network_switches.h" #include "content/public/browser/notification_service.h" #include "content/public/browser/notification_types.h" #include "ui/base/ui_base_switches.h" #if BUILDFLAG(IS_WIN) #include "base/debug/alias.h" #include "base/strings/utf_string_conversions.h" #include "cef/include/internal/cef_win.h" #include "chrome/chrome_elf/chrome_elf_main.h" #include "chrome/install_static/initialize_from_primary_module.h" #endif namespace { CefContext* g_context = nullptr; // Invalid value before CefInitialize is called. int g_exit_code = -1; #if DCHECK_IS_ON() // When the process terminates check if CefShutdown() has been called. class CefShutdownChecker { public: ~CefShutdownChecker() { DCHECK(!g_context) << "CefShutdown was not called"; } } g_shutdown_checker; #endif // DCHECK_IS_ON() #if BUILDFLAG(IS_WIN) // Transfer state from chrome_elf.dll to the libcef.dll. Accessed when // loading chrome://system. void InitInstallDetails() { static bool initialized = false; if (initialized) { return; } initialized = true; install_static::InitializeFromPrimaryModule(); } // Signal chrome_elf to initialize crash reporting, rather than doing it in // DllMain. See https://crbug.com/656800 for details. void InitCrashReporter() { static bool initialized = false; if (initialized) { return; } initialized = true; SignalInitializeCrashReporting(); } #endif // BUILDFLAG(IS_WIN) bool GetColor(const cef_color_t cef_in, bool is_windowless, SkColor* sk_out) { // Windowed browser colors must be fully opaque. if (!is_windowless && CefColorGetA(cef_in) != SK_AlphaOPAQUE) { return false; } // Windowless browser colors may be fully transparent. if (is_windowless && CefColorGetA(cef_in) == SK_AlphaTRANSPARENT) { *sk_out = SK_ColorTRANSPARENT; return true; } // Ignore the alpha component. *sk_out = SkColorSetRGB(CefColorGetR(cef_in), CefColorGetG(cef_in), CefColorGetB(cef_in)); return true; } // Convert |path_str| to a normalized FilePath. base::FilePath NormalizePath(const cef_string_t& path_str, const char* name, bool* has_error = nullptr) { if (has_error) { *has_error = false; } base::FilePath path = base::FilePath(CefString(&path_str)); if (path.EndsWithSeparator()) { // Remove the trailing separator because it will interfere with future // equality checks. path = path.StripTrailingSeparators(); } if (!path.empty()) { if (!path.IsAbsolute()) { LOG(ERROR) << "The " << name << " directory (" << path.value() << ") is not an absolute path. Defaulting to empty."; if (has_error) { *has_error = true; } return base::FilePath(); } #if BUILDFLAG(IS_POSIX) // Always resolve symlinks to absolute paths. This avoids issues with // mismatched paths when mixing Chromium and OS filesystem functions. // See https://crbug.com/40229712. base::ScopedAllowBlockingForTesting allow_blocking; const base::FilePath& resolved_path = base::MakeAbsoluteFilePath(path); if (!resolved_path.empty()) { return resolved_path; } else if (errno != 0 && errno != ENOENT) { PLOG(ERROR) << "realpath(" << path.value() << ") failed"; } #endif // BUILDFLAG(IS_POSIX) } return path; } void SetPath(cef_string_t& path_str, const base::FilePath& path) { #if BUILDFLAG(IS_WIN) CefString(&path_str).FromWString(path.value()); #else CefString(&path_str).FromString(path.value()); #endif } // Convert |path_str| to a normalized FilePath and update the |path_str| value. base::FilePath NormalizePathAndSet(cef_string_t& path_str, const char* name) { const base::FilePath& path = NormalizePath(path_str, name); SetPath(path_str, path); return path; } // Verify that |cache_path| is valid and create it if necessary. bool ValidateCachePath(const base::FilePath& cache_path, const base::FilePath& root_cache_path) { if (cache_path.empty()) { return true; } if (!root_cache_path.empty() && root_cache_path != cache_path && !root_cache_path.IsParent(cache_path)) { LOG(ERROR) << "The cache_path directory (" << cache_path.value() << ") is not a child of the root_cache_path directory (" << root_cache_path.value() << ")"; return false; } base::ScopedAllowBlockingForTesting allow_blocking; if (!base::DirectoryExists(cache_path) && !base::CreateDirectory(cache_path)) { LOG(ERROR) << "The cache_path directory (" << cache_path.value() << ") could not be created."; return false; } return true; } // Like NormalizePathAndSet but with additional checks specific to the // cache_path value. base::FilePath NormalizeCachePathAndSet(cef_string_t& path_str, const base::FilePath& root_cache_path) { bool has_error = false; base::FilePath path = NormalizePath(path_str, "cache_path", &has_error); if (has_error || !ValidateCachePath(path, root_cache_path)) { LOG(ERROR) << "The cache_path is invalid. Defaulting to in-memory storage."; path = base::FilePath(); } SetPath(path_str, path); return path; } // Based on chrome/app/chrome_exe_main_win.cc. // In 32-bit builds, the main thread starts with the default (small) stack size. // The ARCH_CPU_32_BITS blocks here and below are in support of moving the main // thread to a fiber with a larger stack size. #if BUILDFLAG(IS_WIN) && defined(ARCH_CPU_32_BITS) // The information needed to transfer control to the large-stack fiber and later // pass the main routine's exit code back to the small-stack fiber prior to // termination. struct FiberState { FiberState(wWinMainPtr wWinMain, HINSTANCE hInstance, LPWSTR lpCmdLine, int nCmdShow) { this->wWinMain = wWinMain; this->hInstance = hInstance; this->lpCmdLine = lpCmdLine; this->nCmdShow = nCmdShow; } FiberState(mainPtr main, int argc, char** argv) { this->main = main; this->argc = argc; this->argv = argv; } wWinMainPtr wWinMain = nullptr; HINSTANCE hInstance; LPWSTR lpCmdLine; int nCmdShow; mainPtr main = nullptr; int argc; char** argv; LPVOID original_fiber; int fiber_result; }; // A PFIBER_START_ROUTINE function run on a large-stack fiber that calls the // main routine, stores its return value, and returns control to the small-stack // fiber. |params| must be a pointer to a FiberState struct. void WINAPI FiberBinder(void* params) { auto* fiber_state = static_cast(params); // Call the main routine from the fiber. Reusing the entry point minimizes // confusion when examining call stacks in crash reports - seeing wWinMain on // the stack is a handy hint that this is the main thread of the process. if (fiber_state->main) { fiber_state->fiber_result = fiber_state->main(fiber_state->argc, fiber_state->argv); } else { fiber_state->fiber_result = fiber_state->wWinMain(fiber_state->hInstance, nullptr, fiber_state->lpCmdLine, fiber_state->nCmdShow); } // Switch back to the main thread to exit. ::SwitchToFiber(fiber_state->original_fiber); } int RunMainWithPreferredStackSize(FiberState& fiber_state) { enum class FiberStatus { kConvertFailed, kCreateFiberFailed, kSuccess }; FiberStatus fiber_status = FiberStatus::kSuccess; // GetLastError result if fiber conversion failed. DWORD fiber_error = ERROR_SUCCESS; if (!::IsThreadAFiber()) { // Make the main thread's stack size 4 MiB so that it has roughly the same // effective size as the 64-bit build's 8 MiB stack. constexpr size_t kStackSize = 4 * 1024 * 1024; // 4 MiB // Leak the fiber on exit. LPVOID original_fiber = ::ConvertThreadToFiberEx(nullptr, FIBER_FLAG_FLOAT_SWITCH); if (original_fiber) { fiber_state.original_fiber = original_fiber; // Create a fiber with a bigger stack and switch to it. Leak the fiber on // exit. LPVOID big_stack_fiber = ::CreateFiberEx( 0, kStackSize, FIBER_FLAG_FLOAT_SWITCH, FiberBinder, &fiber_state); if (big_stack_fiber) { ::SwitchToFiber(big_stack_fiber); // The fibers must be cleaned up to avoid obscure TLS-related shutdown // crashes. ::DeleteFiber(big_stack_fiber); ::ConvertFiberToThread(); // Control returns here after CEF has finished running on FiberMain. return fiber_state.fiber_result; } fiber_status = FiberStatus::kCreateFiberFailed; } else { fiber_status = FiberStatus::kConvertFailed; } // If we reach here then creating and switching to a fiber has failed. This // probably means we are low on memory and will soon crash. Try to report // this error once crash reporting is initialized. fiber_error = ::GetLastError(); base::debug::Alias(&fiber_error); } // If we are already a fiber then continue normal execution. // Intentionally crash if converting to a fiber failed. CHECK_EQ(fiber_status, FiberStatus::kSuccess); return -1; } #endif // BUILDFLAG(IS_WIN) && defined(ARCH_CPU_32_BITS) } // namespace int CefExecuteProcess(const CefMainArgs& args, CefRefPtr application, void* windows_sandbox_info) { #if BUILDFLAG(IS_WIN) InitInstallDetails(); InitCrashReporter(); #endif return CefMainRunner::RunAsHelperProcess(args, application, windows_sandbox_info); } bool CefInitialize(const CefMainArgs& args, const CefSettings& settings, CefRefPtr application, void* windows_sandbox_info) { #if BUILDFLAG(IS_WIN) InitInstallDetails(); InitCrashReporter(); #endif // Return true if the global context already exists. if (g_context) { return true; } if (settings.size != sizeof(cef_settings_t)) { DCHECK(false) << "invalid CefSettings structure size"; return false; } // Create the new global context object. g_context = new CefContext(); // Initialize the global context. const bool initialized = g_context->Initialize(args, settings, application, windows_sandbox_info); g_exit_code = g_context->exit_code(); if (!initialized) { // Initialization failed. Delete the global context object. delete g_context; g_context = nullptr; return false; } return true; } int CefGetExitCode() { DCHECK_NE(g_exit_code, -1) << "invalid call to CefGetExitCode"; return g_exit_code; } void CefShutdown() { // Verify that the context is in a valid state. if (!CONTEXT_STATE_VALID()) { DCHECK(false) << "context not valid"; return; } // Must always be called on the same thread as Initialize. if (!g_context->OnInitThread()) { DCHECK(false) << "called on invalid thread"; return; } // Shut down the global context. This will block until shutdown is complete. g_context->Shutdown(); // Delete the global context object. delete g_context; g_context = nullptr; } void CefDoMessageLoopWork() { // Verify that the context is in a valid state. if (!CONTEXT_STATE_VALID()) { DCHECK(false) << "context not valid"; return; } // Must always be called on the same thread as Initialize. if (!g_context->OnInitThread()) { DCHECK(false) << "called on invalid thread"; return; } base::RunLoop run_loop; run_loop.RunUntilIdle(); } void CefRunMessageLoop() { // Verify that the context is in a valid state. if (!CONTEXT_STATE_VALID()) { DCHECK(false) << "context not valid"; return; } // Must always be called on the same thread as Initialize. if (!g_context->OnInitThread()) { DCHECK(false) << "called on invalid thread"; return; } g_context->RunMessageLoop(); } void CefQuitMessageLoop() { // Verify that the context is in a valid state. if (!CONTEXT_STATE_VALID()) { DCHECK(false) << "context not valid"; return; } // Must always be called on the same thread as Initialize. if (!g_context->OnInitThread()) { DCHECK(false) << "called on invalid thread"; return; } g_context->QuitMessageLoop(); } #if BUILDFLAG(IS_WIN) #if defined(ARCH_CPU_32_BITS) int CefRunWinMainWithPreferredStackSize(wWinMainPtr wWinMain, HINSTANCE hInstance, LPWSTR lpCmdLine, int nCmdShow) { CHECK(wWinMain && hInstance); FiberState fiber_state(wWinMain, hInstance, lpCmdLine, nCmdShow); return RunMainWithPreferredStackSize(fiber_state); } int CefRunMainWithPreferredStackSize(mainPtr main, int argc, char* argv[]) { CHECK(main); FiberState fiber_state(main, argc, argv); return RunMainWithPreferredStackSize(fiber_state); } #endif // defined(ARCH_CPU_32_BITS) void CefSetOSModalLoop(bool osModalLoop) { // Verify that the context is in a valid state. if (!CONTEXT_STATE_VALID()) { DCHECK(false) << "context not valid"; return; } if (!CEF_CURRENTLY_ON_UIT()) { CEF_POST_TASK(CEF_UIT, base::BindOnce(CefSetOSModalLoop, osModalLoop)); return; } base::CurrentThread::Get()->set_os_modal_loop(osModalLoop); } #endif // BUILDFLAG(IS_WIN) // CefContext CefContext::CefContext() = default; CefContext::~CefContext() = default; // static CefContext* CefContext::Get() { return g_context; } bool CefContext::Initialize(const CefMainArgs& args, const CefSettings& settings, CefRefPtr application, void* windows_sandbox_info) { init_thread_id_ = base::PlatformThread::CurrentId(); settings_ = settings; application_ = application; #if !(BUILDFLAG(IS_WIN) || BUILDFLAG(IS_LINUX)) if (settings.multi_threaded_message_loop) { NOTIMPLEMENTED() << "multi_threaded_message_loop is not supported."; return false; } #endif #if BUILDFLAG(IS_WIN) // Signal Chrome Elf that Chrome has begun to start. SignalChromeElf(); #endif const base::FilePath& root_cache_path = NormalizePathAndSet(settings_.root_cache_path, "root_cache_path"); const base::FilePath& cache_path = NormalizeCachePathAndSet(settings_.cache_path, root_cache_path); if (root_cache_path.empty() && !cache_path.empty()) { CefString(&settings_.root_cache_path) = cache_path.value(); } // All other paths that need to be normalized. NormalizePathAndSet(settings_.browser_subprocess_path, "browser_subprocess_path"); NormalizePathAndSet(settings_.framework_dir_path, "framework_dir_path"); NormalizePathAndSet(settings_.main_bundle_path, "main_bundle_path"); NormalizePathAndSet(settings_.resources_dir_path, "resources_dir_path"); NormalizePathAndSet(settings_.locales_dir_path, "locales_dir_path"); browser_info_manager_ = std::make_unique(); main_runner_ = std::make_unique( settings_.multi_threaded_message_loop, settings_.external_message_pump); const bool initialized = main_runner_->Initialize( &settings_, application, args, windows_sandbox_info, &initialized_, base::BindOnce(&CefContext::OnContextInitialized, base::Unretained(this))); exit_code_ = main_runner_->exit_code(); if (!initialized) { shutting_down_ = true; FinalizeShutdown(); return false; } return true; } void CefContext::RunMessageLoop() { // Must always be called on the same thread as Initialize. DCHECK(OnInitThread()); // Blocks until QuitMessageLoop() is called. main_runner_->RunMessageLoop(); } void CefContext::QuitMessageLoop() { // Must always be called on the same thread as Initialize. DCHECK(OnInitThread()); main_runner_->QuitMessageLoop(); } void CefContext::Shutdown() { // Must always be called on the same thread as Initialize. DCHECK(OnInitThread()); shutting_down_ = true; main_runner_->Shutdown( base::BindOnce(&CefContext::ShutdownOnUIThread, base::Unretained(this)), base::BindOnce(&CefContext::FinalizeShutdown, base::Unretained(this))); } bool CefContext::OnInitThread() { return (base::PlatformThread::CurrentId() == init_thread_id_); } SkColor CefContext::GetBackgroundColor( const CefBrowserSettings* browser_settings, cef_state_t windowless_state) const { bool is_windowless = windowless_state == STATE_ENABLED ? true : (windowless_state == STATE_DISABLED ? false : !!settings_.windowless_rendering_enabled); // Default to opaque white if no acceptable color values are found. SkColor sk_color = SK_ColorWHITE; if (!browser_settings || !GetColor(browser_settings->background_color, is_windowless, &sk_color)) { GetColor(settings_.background_color, is_windowless, &sk_color); } return sk_color; } CefTraceSubscriber* CefContext::GetTraceSubscriber() { CEF_REQUIRE_UIT(); if (shutting_down_) { return nullptr; } if (!trace_subscriber_.get()) { trace_subscriber_ = std::make_unique(); } return trace_subscriber_.get(); } void CefContext::PopulateGlobalRequestContextSettings( CefRequestContextSettings* settings) { CefRefPtr command_line = CefCommandLine::GetGlobalCommandLine(); // This value was already normalized in Initialize. CefString(&settings->cache_path) = CefString(&settings_.cache_path); settings->persist_session_cookies = settings_.persist_session_cookies || command_line->HasSwitch(switches::kPersistSessionCookies); CefString(&settings->cookieable_schemes_list) = CefString(&settings_.cookieable_schemes_list); settings->cookieable_schemes_exclude_defaults = settings_.cookieable_schemes_exclude_defaults; } void CefContext::NormalizeRequestContextSettings( CefRequestContextSettings* settings) { // The |root_cache_path| value was already normalized in Initialize. const base::FilePath& root_cache_path = CefString(&settings_.root_cache_path); NormalizeCachePathAndSet(settings->cache_path, root_cache_path); } void CefContext::AddObserver(Observer* observer) { CEF_REQUIRE_UIT(); observers_.AddObserver(observer); } void CefContext::RemoveObserver(Observer* observer) { CEF_REQUIRE_UIT(); observers_.RemoveObserver(observer); } bool CefContext::HasObserver(Observer* observer) const { CEF_REQUIRE_UIT(); return observers_.HasObserver(observer); } void CefContext::OnContextInitialized() { CEF_REQUIRE_UIT(); if (application_) { // Notify the handler after the global browser context has initialized. CefRefPtr request_context = CefRequestContext::GetGlobalContext(); auto impl = static_cast(request_context.get()); impl->ExecuteWhenBrowserContextInitialized(base::BindOnce( [](CefRefPtr app) { CefRefPtr handler = app->GetBrowserProcessHandler(); if (handler) { handler->OnContextInitialized(); } }, application_)); } } void CefContext::ShutdownOnUIThread() { CEF_REQUIRE_UIT(); browser_info_manager_->DestroyAllBrowsers(); for (auto& observer : observers_) { observer.OnContextDestroyed(); } if (trace_subscriber_.get()) { trace_subscriber_.reset(nullptr); } } void CefContext::FinalizeShutdown() { browser_info_manager_.reset(nullptr); application_ = nullptr; }