The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
This change moves shared resource initialization to a common location and
disables crash reporting initialization in chrome/ code via patch files.
When using the Chrome runtime on macOS the Chrome application window will
display, but web content is currently blank and the application does not
exit cleanly. This will need to be debugged further in the future.
This change adds basic Chrome runtime implementations for CefBrowserContext
and CefBrowserPlatformDelegate. A Chrome browser window with default frame
and styling can now be created using CefBrowserHost::CreateBrowser and some
CefClient callbacks will be triggered via the WebContentsObserver
implementation in CefBrowserHostImpl.
Any additional browser windows created via the Chrome UI will be unmanaged
by CEF. The application message loop will block until all browser windows
have been closed by the user.
Running `cefsimple --enable-chrome-runtime` will create and run a
Chrome browser window using the CEF app methods, and call
CefApp::OnContextInitialized as expected. CEF task methods also
work as expected in the main process. No browser-related methods or
callbacks are currently supported for the Chrome window, and the
application will exit when the last Chrome window closes.
The Chrome runtime requires resources.pak, chrome_100_percent.pak
and chrome_200_percent.pak files which were not previously built
with CEF. It shares the existing locales pak files which have been
updated to include additional Chrome-specific strings.
On Linux, the Chrome runtime requires GTK so use_gtk=true must be
specified via GN_DEFINES when building.
This change also refactors the CEF runtime, which can be tested in
the various supported modes by running:
$ cefclient
$ cefclient --multi-threaded-message-loop
$ cefclient --external-message-pump