- Only install network intercepts for Profiles that have an associated
CefBrowserContext. For incognito windows the CefBrowserContext is
associated with the OffTheRecordProfileImpl's original Profile.
- cefsimple: Return the default CefClient instance for browser windows
created via the Chrome UI, and allow Chrome to show error pages.
Switch to using g_main_context_default() in MainMessageLoopMultithreadedGtk. As of M86
(https://crrev.com/b960daf4e6) Chromium now creates its own context in MessagePumpGlib so
we can use the default context in cefclient. This is also more "correct" from a GTK usage
perspective. As part of this change all GTK dialogs and callbacks are now executed on the
main thread instead of the UI thread (note that these are the same thread when not using
multi-threaded-message-loop).
The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
A CORS preflight request is an "OPTIONS" request sent to a server prior to a
cross-origin XMLHttpRequest or Fetch request. The server's response determines
which HTTP request methods are allowed and supported, and whether credentials
such as Cookies and HTTP Authentication should be sent with requests.
A CORS preflight request will only be sent if certain conditions are met. For
example, it will be sent for requests that have potentially unsafe HTTP
methods [1] or request headers [2]. See the NeedsPreflight function in
services/network/cors/cors_url_loader.cc for full details.
CORS preflight functionality is implemented in the network service and will not
be triggered if the client handles the request instead of allowing it to proceed
over the network. Since the preflight request itself also runs in the network
service it cannot be intercepted by the client.
[1] https://fetch.spec.whatwg.org/#cors-safelisted-method
[2] https://fetch.spec.whatwg.org/#cors-safelisted-request-header
The request.trusted_params.isolation_info.site_for_cookies value must
match request.site_for_cookies.
This change also adds unit test coverage for cross-origin GET redirects.
This fixes an IsCanonical() DCHECK failure triggered by calling
CanonicalCookie::Create for a non-cookieable URL.
This change also adds unit test coverage for cross-origin cookie
behavior with sub-resource requests (iframe, XHR, Fetch).
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
To reduce text execution time and flakyness this change also
introduces a global test server that is initialized when needed
and torn down after all tests have completed.
With site-per-process enabled a spare renderer process will be created
for use with a future browser or navigation. Consequently the
|extra_info| parameter populated in OnRenderProcessThreadCreated will no
longer be delivered to OnRenderThreadCreated in the expected renderer
process. To avoid confusion these callbacks have been removed completely.
After this change CefRenderProcessHandler::OnWebKitInitialized should
be used for startup tasks in the render process, and OnBrowserCreated
should be used in the render process to recieve |extra_info| passed from
CefBrowserHost::CreateBrowser or CefLifeSpanHandler::OnBeforePopup.
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
This change moves shared resource initialization to a common location and
disables crash reporting initialization in chrome/ code via patch files.
When using the Chrome runtime on macOS the Chrome application window will
display, but web content is currently blank and the application does not
exit cleanly. This will need to be debugged further in the future.
This change adds basic Chrome runtime implementations for CefBrowserContext
and CefBrowserPlatformDelegate. A Chrome browser window with default frame
and styling can now be created using CefBrowserHost::CreateBrowser and some
CefClient callbacks will be triggered via the WebContentsObserver
implementation in CefBrowserHostImpl.
Any additional browser windows created via the Chrome UI will be unmanaged
by CEF. The application message loop will block until all browser windows
have been closed by the user.
Running `cefsimple --enable-chrome-runtime` will create and run a
Chrome browser window using the CEF app methods, and call
CefApp::OnContextInitialized as expected. CEF task methods also
work as expected in the main process. No browser-related methods or
callbacks are currently supported for the Chrome window, and the
application will exit when the last Chrome window closes.
The Chrome runtime requires resources.pak, chrome_100_percent.pak
and chrome_200_percent.pak files which were not previously built
with CEF. It shares the existing locales pak files which have been
updated to include additional Chrome-specific strings.
On Linux, the Chrome runtime requires GTK so use_gtk=true must be
specified via GN_DEFINES when building.
This change also refactors the CEF runtime, which can be tested in
the various supported modes by running:
$ cefclient
$ cefclient --multi-threaded-message-loop
$ cefclient --external-message-pump
This change allows the client to directly send and receive DevTools
protocol messages (send method calls, and receive method results and
events) without requiring a DevTools front-end or remote-debugging
session.
This change includes additional supporting changes:
- Add a new CefRequestHandler::OnDocumentAvailableInMainFrame
callback (see issue #1454).
- Add a CefParseJSON variant that accepts a UTF8-encoded buffer.
- Add a `--devtools-protocol-log-file=<path>` command-line flag for
logging protocol messages sent to/from the DevTools front-end
while it is displayed. This is useful for understanding existing
DevTools protocol usage.
- Add a new "libcef_static_unittests" executable target to support
light-weight unit tests of libcef_static internals (e.g. without
requiring exposure via the CEF API). Files to be unittested are
placed in the new "libcef_static_unittested" source_set which is
then included by both the existing libcef_static library and the
new unittests executable target.
- Linux: Remove use_bundled_fontconfig=false, which is no longer
required and causes unittest build errors (see issue #2424).
This change also adds a cefclient demo for configuring offline mode
using the DevTools protocol (fixes issue #245). This is controlled
by the "Offline mode" context menu option and the `--offline`
command-line switch which will launch cefclient in offline mode. When
cefclient is offline all network requests will fail with
ERR_INTERNET_DISCONNECTED and navigator.onLine will return false when
called from JavaScript in any frame. This mode is per-browser so
newly created browser windows will have the default mode. Note that
configuring offline mode in this way will not update the Network tab
UI ("Throtting" option) in a displayed DevTools front-end instance.
This attribute is useful for identifying different classes of cast devices
without first requiring a connection (CAST, CAST_AUDIO, CAST_AUDIO_GROUP, etc).
This change also restores the Chromium default values for the
SameSiteByDefaultCookies and CookiesWithoutSameSiteMustBeSecure features. See
https://www.chromium.org/updates/same-site for feature details and rollout
timeline.
Chromium supports communication with media devices on the local network via
the Cast and DIAL protocols. This takes two primary forms:
1. Messaging, where strings representing state information are passed between
the client and a dedicated receiver app on the media device. The receiver
app communicates directly with an app-specific backend service to retrieve
and possibly control media playback.
2. Tab/desktop mirroring, where the media contents are streamed directly from
the browser to a generic streaming app on the media device and playback is
controlled by the browser.
This change adds support for device discovery and messaging (but not
mirroring) with functionality exposed via the new CefMediaRouter interface.
To test: Navigate to http://tests/media_router in cefclient and follow the
on-screen instructions.