To test:
Run `cefclient.exe --use-views --hide-frame --hide-controls`
Add `--enable-chrome-runtime` for the same behavior using the Chrome location
bar instead of a text field.
Widevine CDM binaries will be downloaded on supported platforms shortly after
application startup. Widevine support will then become available within a few
seconds after successful installation on Windows or after the next application
restart on other platforms. The CDM files will be downloaded to a "WidevineCdm"
directory inside the `CefSettings.user_data_path` directory.
Pass the `--disable-component-update` command-line flag to disable Widevine
download and installation. Pass the `--component-updater=fast-update` command-
line flag to force Widevine download immediately after application startup.
See the related issue for additional usage details.
This change adds a minimal implementation of the |tabs.update| extension API and
modifies StreamsPrivateAPI::SendExecuteMimeTypeHandlerEvent to return a valid
|streamInfo.tabId| value as required by the navigateInCurrentTab implementation
in chrome/browser/resources/pdf/browser_api.js.
This change introduces a few minor CEF API behavior changes:
- A CefProcessMessage object cannot be reused after being passed to
SendProcessMessage.
- The |extra_info| argument to CefRenderProcessHandler::OnBrowserCreated may
now be NULL.
Where appropriate, we now utilize the default UTF string encoding format and
shared memory to reduce copies and conversions for the cross-process
transfer of arbitrary-length strings. For example, CefFrame::GetSource/GetText
now involves zero UTF conversions and zero copies in the browser process for
the CefString delivered to CefStringVisitor::Visit().
The policy->CanAccessDataForOrigin CHECK in NavigationRequest::
GetOriginForURLLoaderFactory was failing because unregistered schemes
(which are already considered non-standard schemes) didn't trigger the
registered non-standard scheme allowance that we previously added in
ChildProcessSecurityPolicyImpl::CanAccessDataForOrigin. This change
modifies GetOriginForURLLoaderFactory to always return an opaque/unique
origin for non-standard schemes resulting in unregistered and non-standard
schemes receiving the same treatment.
New test coverage has been added for this condition, and can be run with:
ceftests --gtest_filter=CorsTest.*CustomUnregistered*
Profile::IsIncognitoProfile() currently returns false for CEF incognito profiles
because they are not the primary OTR profile. At the same time, we don't
necessarily want IsIncognitoProfile() to return true for CEF profiles because,
among other things, that causes the BrowserView to apply the dark toolbar theme.
Instead, this change updates ProfileMenu expectations to support the CEF
incognito profiles without otherwise modifying the incognito behavior.
Note that the IsIncognitoProfile() implementation has recently changed in
https://crrev.com/7bf6eb2497 and the conclusions in this commit will likely need
to be revisited in an upcoming Chromium update.
The Chrome runtime requires that cookieable scheme information be available
at Profile initialization time because it also triggers NetworkContext creation
at the same time. To make this possible, and to avoid various race conditions
when setting state, the cookieable scheme configuration has been added as
|cookieable_schemes_list| and |cookieable_schemes_exclude_defaults| in
CefSettings and CefBrowserContextSettings. The CefCookieManager::
SetSupportedSchemes and CefBrowserProcessHandler::GetCookieableSchemes methods
are no longer required and have been removed.
This change also modifies chrome to delay OffTheRecordProfileImpl initialization
so that |ChromeBrowserContext::profile_| can be set before
ChromeContentBrowserClientCef::ConfigureNetworkContextParams calls
CefBrowserContext::FromBrowserContext to retrieve the ChromeBrowserContext
and associated cookieable scheme information. Otherwise, the
ChromeBrowserContext will not be matched and the NetworkContext will not be
configured correctly.
The CookieTest suite now passes with the Chrome runtime enabled.
Chrome currently uses chrome_100_percent.pak, chrome_200_percent.pak,
resources.pak and locales/<locale>.pak files. This change adds CEF
resources to those existing pak files and updates the Alloy runtime to
use them instead of the previous CEF-specific pak files (cef.pak,
cef_100_percent.pak, cef_200_percent.pak, cef_extensions.pak,
devtools_resources.pak) which are no longer generated.
The addition of Chrome resources results in an ~16% (~4.1MB) increase in total
combined pak file size vs. the previous CEF-specific pak files. While a size
increase is not ideal for the Alloy runtime, it seems preferable to the
alternative of distributing separate (and partially duplicated) pak files for
each runtime, which would have added ~9.8MB to the total binary distribution
size.
This fixes an `Unhandled chrome.send("getApps");` error when creating a new tab.
Creating a new tab initially loads chrome://newtab which should then be
rewritten to chrome://new-tab-page for normal profiles in
HandleNewTabURLRewrite. Failure to rewrite the URL results in the loading of
NewTabUI instead of the expected NewTabPageUI. NewTabUI loads different
resources for normal vs incognito/guest profiles (new_tab.js vs
incognito_tab.js), and new_tab.js calls chrome.send("getApps") via
page_list_view.js. This then fails in WebUIImpl::ProcessWebUIMessage because
the message is unhandled.
The Chrome browser can now be hosted in a Views-based application on Mac
(see issue #2969).
To launch a fully-featured Chrome window using cefsimple:
$ open cefsimple.app --args --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ open cefsimple.app --args --use-views [--enable-chrome-runtime]
To launch a fully-styled Views-hosted window using cefclient:
$ open cefclient.app --args --use-views [--enable-chrome-runtime]
Known issues:
- Some Views unit tests are currently failing on Mac.
The Chrome browser can now be hosted in a Views-based application on Windows
and Linux.
To launch a fully-featured Chrome window using cefsimple:
$ cefsimple --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ cefsimple --enable-chrome-runtime --use-views
To launch a fully-styled Views-hosted window using cefclient:
$ cefclient --enable-chrome-runtime --use-views
Views unit tests also now pass with the Chrome runtime enabled:
$ ceftests --gtest_filter=Views* --enable-chrome-runtime
Known issues:
- Popup browsers cannot be intercepted and reparented.
To avoid conflicting IDs between Alloy (which uses cef.pak) and Chrome
(which uses chrome_100_percent.pak) the cef/LICENSE.txt file is now included
in both cef/libcef/resources/cef_resources.grd and
chrome/app/theme/chrome_unscaled_resources.grd with different ID values.
The cef.pak file currently contains both CEF-specific resources and Chrome
resources that are already included in the default *.pak files distributed
with Chrome. In the future we should remove this duplication and just
distribute the same *.pak files as Chrome for the majority of resources.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
This change moves shared resource initialization to a common location and
disables crash reporting initialization in chrome/ code via patch files.
When using the Chrome runtime on macOS the Chrome application window will
display, but web content is currently blank and the application does not
exit cleanly. This will need to be debugged further in the future.
This change adds basic Chrome runtime implementations for CefBrowserContext
and CefBrowserPlatformDelegate. A Chrome browser window with default frame
and styling can now be created using CefBrowserHost::CreateBrowser and some
CefClient callbacks will be triggered via the WebContentsObserver
implementation in CefBrowserHostImpl.
Any additional browser windows created via the Chrome UI will be unmanaged
by CEF. The application message loop will block until all browser windows
have been closed by the user.
Existing CefBrowserContext functionality is now split between
CefBrowserContext and AlloyBrowserContext. Runtime implementations of
CefBrowserContext will provide access to the content::BrowserContext and
Profile types via different inheritance paths. For example, the Alloy
runtime uses ChromeProfileAlloy and the Chrome runtime uses ProfileImpl.
This change also renames CefResourceContext to CefIOThreadState to more
accurately represent its purpose as it no longer needs to extend
content::ResourceContext.