Set enable_alloy_bootstrap=false to build with Alloy bootstrap code
removed. Extension API is documented as deprecated in comments but
not compiled out with this arg.
Split the Alloy runtime into bootstrap and style components. Support
creation of Alloy style browsers and windows with the Chrome runtime.
Chrome runtime (`--enable-chrome-runtime`) + Alloy style
(`--use-alloy-style`) supports Views (`--use-views`), native parent
(`--use-native`) and windowless rendering
(`--off-screen-rendering-enabled`).
Print preview is supported in all cases except with windowless rendering
on all platforms and native parent on MacOS. It is disabled by default
with Alloy style for legacy compatibility. Where supported it can be
enabled or disabled globally using `--[enable|disable]-print-preview` or
configured on a per-RequestContext basis using the
`printing.print_preview_disabled` preference. It also behaves as
expected when triggered via the PDF viewer print button.
Chrome runtime + Alloy style behavior differs from Alloy runtime in the
following significant ways:
- Supports Chrome error pages by default.
- DevTools popups are Chrome style only (cannot be windowless).
- The Alloy extension API will not supported.
Chrome runtime + Alloy style passes all expected Alloy ceftests except
the following:
- `DisplayTest.AutoResize` (Alloy extension API not supported)
- `DownloadTest.*` (Download API not yet supported)
- `ExtensionTest.*` (Alloy extension API not supported)
This change also adds Chrome runtime support for
CefContextMenuHandler::RunContextMenu (see #3293).
This change also explicitly blocks (and doesn't retry) FrameAttached
requests from PDF viewer and print preview excluded frames (see #3664).
Known issues specific to Chrome runtime + Alloy style:
- DevTools popup with windowless rendering doesn't load successfully.
Use windowed rendering or remote debugging as a workaround.
- Chrome style Window with Alloy style BrowserView (`--use-alloy-style
--use-chrome-style-window`) does not show Chrome theme changes.
To test:
- Run `ceftests --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window] [--use-views|--use-native]
--gtest_filter=...`
- Run `cefclient --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window]
[--use-views|--use-native|--off-screen-rendering-enabled]`
- Run `cefsimple --enable-chrome-runtime --use-alloy-style [--use-views]`
- Windows: SDK version 10.0.20348.0 is now required.
- MacOS: SDK version 12.3 (Xcode 13.3) is now required.
- Legacy swiftshader binaries (`swiftshader/*` on Win/Linux and
`libswiftshader_*.dylib` on MacOS) have been removed (see issue #3176).
All file dialogs irrespective of source, platform and runtime will now be
routed through CefFileDialogManager and trigger CefDialogHandler callbacks
(see issue #3293).
Adds Chrome runtime support for CefBrowserHost::RunFileDialog and
CefDialogHandler callbacks.
Adds Alloy runtime support for internal GTK file and print dialogs on Linux
subject to the following limitations:
1. Internal GTK implementation:
- Cannot be used with multi-threaded-message-loop because Chromium's
internal GTK implementation is not thread-safe (does not use GDK threads).
- Dialogs will not be modal to application windows when used with off-screen
rendering due to lack of access to the client's top-level GtkWindow.
2. Cefclient CefDialogHandler implementation:
- Cannot be used with Views because it requires a top-level GtkWindow.
Due to the above limitations no dialog implementation is currently provided for
Views + multi-threaded-message-loop on Linux. In cases where both
implementations are supported the cefclient version is now behind an optional
`--use-client-dialogs` command-line flag.
Expressly forbids multiple simultaneous file dialogs with the internal platform
implementation which uses modal dialogs. CefDialogHandler will still be notified
and can optionally handle each request without a modal dialog (see issue #3154).
Removes some RunFileDialog parameters that are not supported by the Chrome file
dialog implementation (selected_accept_filter parameter, cef_file_dialog_mode_t
overwrite/read-only flags).
This change adds Chrome runtime support on Windows and Linux for creating a
browser parented to a native window supplied by the client application.
Expected API usage and window behavior is similar to what already exists with
the Alloy runtime. The parent window handle should be specified by using
CefWindowInfo::SetAsChild in combination with the CefBrowserHost::CreateBrowser
and CefLifeSpanHandler::OnBeforePopup callbacks.
The previously existing behavior of creating a fully-featured Chrome browser
window when empty CefWindowInfo is used with CreateBrowser remains unchanged
and Views is still the preferred API for creating top-level Chrome windows
with custom styling (e.g. title bar only, frameless, etc).
The cefclient Popup Window test with a native parent window continues to crash
on Linux with both the Alloy and Chrome runtimes (see issue #3165).
Also adds Chrome runtime support for CefDisplayHandler::OnCursorChange.
To test:
- Run `cefclient --enable-chrome-runtime [--use-views]` for the default (and
previously existing) Views-based behavior.
- Run `cefclient --enable-chrome-runtime --use-native` for the new native
parent window behavior.
- Run `cefclient --enable-chrome-runtime --use-native --no-activate` and the
window will not be activated (take input focus) on launch (Windows only).
- Run `cefclient --enable-chrome-runtime [--use-views|--use-native]
--mouse-cursor-change-disabled` and the mouse cursor will not change on
mouseover of DOM elements.
- Remove CefRequestContextHandler::OnBeforePluginLoad and
CefRequestContext::PurgePluginListCache (fixes issue #3047). These methods
stopped being relevant after the removal of Flash support in January 2021.
The last remaining PPAPI plugin (PDF viewer) will switch to a non-plugin
implementation in the near future (see https://crbug.com/702993#c58) and
functionality related to plugin filtering has already been removed in
https://crrev.com/343ae351c9.
The Chrome browser can now be hosted in a Views-based application on Windows
and Linux.
To launch a fully-featured Chrome window using cefsimple:
$ cefsimple --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ cefsimple --enable-chrome-runtime --use-views
To launch a fully-styled Views-hosted window using cefclient:
$ cefclient --enable-chrome-runtime --use-views
Views unit tests also now pass with the Chrome runtime enabled:
$ ceftests --gtest_filter=Views* --enable-chrome-runtime
Known issues:
- Popup browsers cannot be intercepted and reparented.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
Existing CefBrowserContext functionality is now split between
CefBrowserContext and AlloyBrowserContext. Runtime implementations of
CefBrowserContext will provide access to the content::BrowserContext and
Profile types via different inheritance paths. For example, the Alloy
runtime uses ChromeProfileAlloy and the Chrome runtime uses ProfileImpl.
This change also renames CefResourceContext to CefIOThreadState to more
accurately represent its purpose as it no longer needs to extend
content::ResourceContext.
This is the first pass in removing direct dependencies on the Alloy
runtime from code that can potentially be shared between runtimes.
CefBrowserHost and CefRequestContext APIs (including CefCookieManager,
CefURLRequest, etc.) are not yet implemented for the Chrome runtime.
Assert early if these API methods are called while the Chrome runtime
is enabled.
As part of introducing the Chrome runtime we now need to distinguish
between the classes that implement the current CEF runtime and the
classes the implement the shared CEF library/runtime structure and
public API. We choose the name Alloy for the current CEF runtime
because it describes a combination of Chrome and other elements.
Shared CEF library/runtime classes will continue to use the Cef
prefix. Classes that implement the Alloy or Chrome runtime will use
the Alloy or Chrome prefixes respectively. Classes that extend an
existing Chrome-prefixed class will add the Cef or Alloy suffix,
thereby following the existing naming pattern of Chrome-derived
classes.
This change applies the new naming pattern to an initial set of
runtime-related classes. Additional classes/files will be renamed
and moved as the Chrome runtime implementation progresses.
This change allows the client to directly send and receive DevTools
protocol messages (send method calls, and receive method results and
events) without requiring a DevTools front-end or remote-debugging
session.
This change includes additional supporting changes:
- Add a new CefRequestHandler::OnDocumentAvailableInMainFrame
callback (see issue #1454).
- Add a CefParseJSON variant that accepts a UTF8-encoded buffer.
- Add a `--devtools-protocol-log-file=<path>` command-line flag for
logging protocol messages sent to/from the DevTools front-end
while it is displayed. This is useful for understanding existing
DevTools protocol usage.
- Add a new "libcef_static_unittests" executable target to support
light-weight unit tests of libcef_static internals (e.g. without
requiring exposure via the CEF API). Files to be unittested are
placed in the new "libcef_static_unittested" source_set which is
then included by both the existing libcef_static library and the
new unittests executable target.
- Linux: Remove use_bundled_fontconfig=false, which is no longer
required and causes unittest build errors (see issue #2424).
This change also adds a cefclient demo for configuring offline mode
using the DevTools protocol (fixes issue #245). This is controlled
by the "Offline mode" context menu option and the `--offline`
command-line switch which will launch cefclient in offline mode. When
cefclient is offline all network requests will fail with
ERR_INTERNET_DISCONNECTED and navigator.onLine will return false when
called from JavaScript in any frame. This mode is per-browser so
newly created browser windows will have the default mode. Note that
configuring offline mode in this way will not update the Network tab
UI ("Throtting" option) in a displayed DevTools front-end instance.