BackForwardCache is currently being tested via field trials (see
https://crbug.com/1171298) and can be explicitly disabled using the
`--disable-back-forward-cache` or `--disable-features=BackForwardCache`
command-line flags. The default behavior now matches the Chrome runtime.
With the introduction of prerendering in Chromium it is now possible for
RenderFrameHosts (RFH) to move between FrameTrees. As a consequence we can no
longer rely on FrameTreeNode IDs to uniquely identify a RFH over its lifespan.
We must now switch to using GlobalRenderFrameHostId (child_id, frame_routing_id)
instead for that purpose. Additionally, we simplify existing code by using the
GlobalRenderFrameHostId struct in all places that previously used a
(render_process_id, render_frame_id) pair, since these concepts are equivalent.
See https://crbug.com/1179502#c8 for additional background.
Widevine CDM binaries will be downloaded on supported platforms shortly after
application startup. Widevine support will then become available within a few
seconds after successful installation on Windows or after the next application
restart on other platforms. The CDM files will be downloaded to a "WidevineCdm"
directory inside the `CefSettings.user_data_path` directory.
Pass the `--disable-component-update` command-line flag to disable Widevine
download and installation. Pass the `--component-updater=fast-update` command-
line flag to force Widevine download immediately after application startup.
See the related issue for additional usage details.
This change introduces a few minor CEF API behavior changes:
- A CefProcessMessage object cannot be reused after being passed to
SendProcessMessage.
- The |extra_info| argument to CefRenderProcessHandler::OnBrowserCreated may
now be NULL.
Where appropriate, we now utilize the default UTF string encoding format and
shared memory to reduce copies and conversions for the cross-process
transfer of arbitrary-length strings. For example, CefFrame::GetSource/GetText
now involves zero UTF conversions and zero copies in the browser process for
the CefString delivered to CefStringVisitor::Visit().
With the Chrome runtime, Profile initialization may be asynchronous. Code that
waited on CefBrowserContext creation now needs to wait on CefBrowserContext
initialization instead.
The Chrome browser can now be hosted in a Views-based application on Windows
and Linux.
To launch a fully-featured Chrome window using cefsimple:
$ cefsimple --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ cefsimple --enable-chrome-runtime --use-views
To launch a fully-styled Views-hosted window using cefclient:
$ cefclient --enable-chrome-runtime --use-views
Views unit tests also now pass with the Chrome runtime enabled:
$ ceftests --gtest_filter=Views* --enable-chrome-runtime
Known issues:
- Popup browsers cannot be intercepted and reparented.
The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
Media device IDs will now be persisted across navigation and reload by default.
The device IDs will also be persisted across restart if --cache-path=<path> and
--persist-user-preferences settings are specified.
This fixes an IsCanonical() DCHECK failure triggered by calling
CanonicalCookie::Create for a non-cookieable URL.
This change also adds unit test coverage for cross-origin cookie
behavior with sub-resource requests (iframe, XHR, Fetch).
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
Existing CefBrowserContext functionality is now split between
CefBrowserContext and AlloyBrowserContext. Runtime implementations of
CefBrowserContext will provide access to the content::BrowserContext and
Profile types via different inheritance paths. For example, the Alloy
runtime uses ChromeProfileAlloy and the Chrome runtime uses ProfileImpl.
This change also renames CefResourceContext to CefIOThreadState to more
accurately represent its purpose as it no longer needs to extend
content::ResourceContext.
This is the first pass in removing direct dependencies on the Alloy
runtime from code that can potentially be shared between runtimes.
CefBrowserHost and CefRequestContext APIs (including CefCookieManager,
CefURLRequest, etc.) are not yet implemented for the Chrome runtime.
Assert early if these API methods are called while the Chrome runtime
is enabled.
As part of introducing the Chrome runtime we now need to distinguish
between the classes that implement the current CEF runtime and the
classes the implement the shared CEF library/runtime structure and
public API. We choose the name Alloy for the current CEF runtime
because it describes a combination of Chrome and other elements.
Shared CEF library/runtime classes will continue to use the Cef
prefix. Classes that implement the Alloy or Chrome runtime will use
the Alloy or Chrome prefixes respectively. Classes that extend an
existing Chrome-prefixed class will add the Cef or Alloy suffix,
thereby following the existing naming pattern of Chrome-derived
classes.
This change applies the new naming pattern to an initial set of
runtime-related classes. Additional classes/files will be renamed
and moved as the Chrome runtime implementation progresses.