The Chrome runtime requires that cookieable scheme information be available
at Profile initialization time because it also triggers NetworkContext creation
at the same time. To make this possible, and to avoid various race conditions
when setting state, the cookieable scheme configuration has been added as
|cookieable_schemes_list| and |cookieable_schemes_exclude_defaults| in
CefSettings and CefBrowserContextSettings. The CefCookieManager::
SetSupportedSchemes and CefBrowserProcessHandler::GetCookieableSchemes methods
are no longer required and have been removed.
This change also modifies chrome to delay OffTheRecordProfileImpl initialization
so that |ChromeBrowserContext::profile_| can be set before
ChromeContentBrowserClientCef::ConfigureNetworkContextParams calls
CefBrowserContext::FromBrowserContext to retrieve the ChromeBrowserContext
and associated cookieable scheme information. Otherwise, the
ChromeBrowserContext will not be matched and the NetworkContext will not be
configured correctly.
The CookieTest suite now passes with the Chrome runtime enabled.
Chrome currently uses chrome_100_percent.pak, chrome_200_percent.pak,
resources.pak and locales/<locale>.pak files. This change adds CEF
resources to those existing pak files and updates the Alloy runtime to
use them instead of the previous CEF-specific pak files (cef.pak,
cef_100_percent.pak, cef_200_percent.pak, cef_extensions.pak,
devtools_resources.pak) which are no longer generated.
The addition of Chrome resources results in an ~16% (~4.1MB) increase in total
combined pak file size vs. the previous CEF-specific pak files. While a size
increase is not ideal for the Alloy runtime, it seems preferable to the
alternative of distributing separate (and partially duplicated) pak files for
each runtime, which would have added ~9.8MB to the total binary distribution
size.
If a WeakPtr references an already-destroyed object, operator-> and
operator* end up simply dereferencing nullptr. However, dereferencing
nullptr is undefined behavior and can be optimized in surprising ways
by compilers. To prevent this from happening, add a defence of last
resort and CHECK that the WeakPtr is still valid.
Based on https://crrev.com/bbb64b5c69
The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
With site-per-process enabled a spare renderer process will be created
for use with a future browser or navigation. Consequently the
|extra_info| parameter populated in OnRenderProcessThreadCreated will no
longer be delivered to OnRenderThreadCreated in the expected renderer
process. To avoid confusion these callbacks have been removed completely.
After this change CefRenderProcessHandler::OnWebKitInitialized should
be used for startup tasks in the render process, and OnBrowserCreated
should be used in the render process to recieve |extra_info| passed from
CefBrowserHost::CreateBrowser or CefLifeSpanHandler::OnBeforePopup.
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
Running `cefsimple --enable-chrome-runtime` will create and run a
Chrome browser window using the CEF app methods, and call
CefApp::OnContextInitialized as expected. CEF task methods also
work as expected in the main process. No browser-related methods or
callbacks are currently supported for the Chrome window, and the
application will exit when the last Chrome window closes.
The Chrome runtime requires resources.pak, chrome_100_percent.pak
and chrome_200_percent.pak files which were not previously built
with CEF. It shares the existing locales pak files which have been
updated to include additional Chrome-specific strings.
On Linux, the Chrome runtime requires GTK so use_gtk=true must be
specified via GN_DEFINES when building.
This change also refactors the CEF runtime, which can be tested in
the various supported modes by running:
$ cefclient
$ cefclient --multi-threaded-message-loop
$ cefclient --external-message-pump
This change allows the client to directly send and receive DevTools
protocol messages (send method calls, and receive method results and
events) without requiring a DevTools front-end or remote-debugging
session.
This change includes additional supporting changes:
- Add a new CefRequestHandler::OnDocumentAvailableInMainFrame
callback (see issue #1454).
- Add a CefParseJSON variant that accepts a UTF8-encoded buffer.
- Add a `--devtools-protocol-log-file=<path>` command-line flag for
logging protocol messages sent to/from the DevTools front-end
while it is displayed. This is useful for understanding existing
DevTools protocol usage.
- Add a new "libcef_static_unittests" executable target to support
light-weight unit tests of libcef_static internals (e.g. without
requiring exposure via the CEF API). Files to be unittested are
placed in the new "libcef_static_unittested" source_set which is
then included by both the existing libcef_static library and the
new unittests executable target.
- Linux: Remove use_bundled_fontconfig=false, which is no longer
required and causes unittest build errors (see issue #2424).
This change also adds a cefclient demo for configuring offline mode
using the DevTools protocol (fixes issue #245). This is controlled
by the "Offline mode" context menu option and the `--offline`
command-line switch which will launch cefclient in offline mode. When
cefclient is offline all network requests will fail with
ERR_INTERNET_DISCONNECTED and navigator.onLine will return false when
called from JavaScript in any frame. This mode is per-browser so
newly created browser windows will have the default mode. Note that
configuring offline mode in this way will not update the Network tab
UI ("Throtting" option) in a displayed DevTools front-end instance.
The cef_api_hash.h file was previously only updated when the translator tool
was run manually. Forgetting to run the translator tool after changing
include/internal/cef_types*.h files would result in cef_parser.py
incorrectly computing the CEF minor version number for future builds. By
updating this file automatically at build time the number of errors should be
reduced.
This attribute is useful for identifying different classes of cast devices
without first requiring a connection (CAST, CAST_AUDIO, CAST_AUDIO_GROUP, etc).
This change also restores the Chromium default values for the
SameSiteByDefaultCookies and CookiesWithoutSameSiteMustBeSecure features. See
https://www.chromium.org/updates/same-site for feature details and rollout
timeline.
Chromium supports communication with media devices on the local network via
the Cast and DIAL protocols. This takes two primary forms:
1. Messaging, where strings representing state information are passed between
the client and a dedicated receiver app on the media device. The receiver
app communicates directly with an app-specific backend service to retrieve
and possibly control media playback.
2. Tab/desktop mirroring, where the media contents are streamed directly from
the browser to a generic streaming app on the media device and playback is
controlled by the browser.
This change adds support for device discovery and messaging (but not
mirroring) with functionality exposed via the new CefMediaRouter interface.
To test: Navigate to http://tests/media_router in cefclient and follow the
on-screen instructions.